synthesis.py 7.5 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lifuchen 已提交
14 15
import os
from tensorboardX import SummaryWriter
16
from scipy.io.wavfile import write
L
lifuchen 已提交
17
from collections import OrderedDict
L
lifuchen 已提交
18
import argparse
L
lifuchen 已提交
19
from pprint import pprint
L
lifuchen 已提交
20
from ruamel import yaml
L
lifuchen 已提交
21
from matplotlib import cm
L
lifuchen 已提交
22 23 24 25 26
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
from parakeet.g2p.en import text_to_sequence
from parakeet import audio
L
lifuchen 已提交
27
from parakeet.models.fastspeech.fastspeech import FastSpeech
28
from parakeet.models.transformer_tts.utils import *
29 30
from parakeet.models.wavenet import WaveNet, UpsampleNet
from parakeet.models.clarinet import STFT, Clarinet, ParallelWaveNet
31
from parakeet.utils.layer_tools import freeze
32
from parakeet.utils import io
L
lifuchen 已提交
33

L
lifuchen 已提交
34

35 36 37 38 39 40 41 42 43 44 45
def add_config_options_to_parser(parser):
    parser.add_argument("--config", type=str, help="path of the config file")
    parser.add_argument(
        "--config_clarinet", type=str, help="path of the clarinet config file")
    parser.add_argument("--use_gpu", type=int, default=0, help="device to use")
    parser.add_argument(
        "--alpha",
        type=float,
        default=1,
        help="determine the length of the expanded sequence mel, controlling the voice speed."
    )
L
lifuchen 已提交
46

47 48 49 50 51 52
    parser.add_argument(
        "--checkpoint", type=str, help="fastspeech checkpoint to synthesis")
    parser.add_argument(
        "--checkpoint_clarinet",
        type=str,
        help="clarinet checkpoint to synthesis")
L
lifuchen 已提交
53

54 55 56 57 58
    parser.add_argument(
        "--output",
        type=str,
        default="synthesis",
        help="path to save experiment results")
L
lifuchen 已提交
59

L
lifuchen 已提交
60

61 62 63
def synthesis(text_input, args):
    local_rank = dg.parallel.Env().local_rank
    place = (fluid.CUDAPlace(local_rank) if args.use_gpu else fluid.CPUPlace())
64
    fluid.enable_dygraph(place)
65 66

    with open(args.config) as f:
L
lifuchen 已提交
67
        cfg = yaml.load(f, Loader=yaml.Loader)
L
lifuchen 已提交
68

69 70 71 72 73
    # tensorboard
    if not os.path.exists(args.output):
        os.mkdir(args.output)

    writer = SummaryWriter(os.path.join(args.output, 'log'))
L
lifuchen 已提交
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    model = FastSpeech(cfg['network'], num_mels=cfg['audio']['num_mels'])
    # Load parameters.
    global_step = io.load_parameters(
        model=model, checkpoint_path=args.checkpoint)
    model.eval()

    text = np.asarray(text_to_sequence(text_input))
    text = np.expand_dims(text, axis=0)
    pos_text = np.arange(1, text.shape[1] + 1)
    pos_text = np.expand_dims(pos_text, axis=0)

    text = dg.to_variable(text)
    pos_text = dg.to_variable(pos_text)

    _, mel_output_postnet = model(text, pos_text, alpha=args.alpha)

    result = np.exp(mel_output_postnet.numpy())
    mel_output_postnet = fluid.layers.transpose(
        fluid.layers.squeeze(mel_output_postnet, [0]), [1, 0])
    mel_output_postnet = np.exp(mel_output_postnet.numpy())
    basis = librosa.filters.mel(cfg['audio']['sr'], cfg['audio']['n_fft'],
                                cfg['audio']['num_mels'])
    inv_basis = np.linalg.pinv(basis)
    spec = np.maximum(1e-10, np.dot(inv_basis, mel_output_postnet))

    # synthesis use clarinet
    wav_clarinet = synthesis_with_clarinet(
        args.config_clarinet, args.checkpoint_clarinet, result, place)
    writer.add_audio(text_input + '(clarinet)', wav_clarinet, 0,
                     cfg['audio']['sr'])
    if not os.path.exists(os.path.join(args.output, 'samples')):
        os.mkdir(os.path.join(args.output, 'samples'))
    write(
        os.path.join(os.path.join(args.output, 'samples'), 'clarinet.wav'),
        cfg['audio']['sr'], wav_clarinet)

    #synthesis use griffin-lim
    wav = librosa.core.griffinlim(
        spec**cfg['audio']['power'],
        hop_length=cfg['audio']['hop_length'],
        win_length=cfg['audio']['win_length'])
    writer.add_audio(text_input + '(griffin-lim)', wav, 0, cfg['audio']['sr'])
    write(
        os.path.join(
            os.path.join(args.output, 'samples'), 'grinffin-lim.wav'),
        cfg['audio']['sr'], wav)
    print("Synthesis completed !!!")
L
lifuchen 已提交
122 123
    writer.close()

L
lifuchen 已提交
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
def synthesis_with_clarinet(config_path, checkpoint, mel_spectrogram, place):
    with open(config_path, 'rt') as f:
        config = yaml.safe_load(f)

    data_config = config["data"]
    n_mels = data_config["n_mels"]

    teacher_config = config["teacher"]
    n_loop = teacher_config["n_loop"]
    n_layer = teacher_config["n_layer"]
    filter_size = teacher_config["filter_size"]

    # only batch=1 for validation is enabled

    with dg.guard(place):
        # conditioner(upsampling net)
        conditioner_config = config["conditioner"]
        upsampling_factors = conditioner_config["upsampling_factors"]
        upsample_net = UpsampleNet(upscale_factors=upsampling_factors)
        freeze(upsample_net)

        residual_channels = teacher_config["residual_channels"]
        loss_type = teacher_config["loss_type"]
        output_dim = teacher_config["output_dim"]
        log_scale_min = teacher_config["log_scale_min"]
        assert loss_type == "mog" and output_dim == 3, \
            "the teacher wavenet should be a wavenet with single gaussian output"

        teacher = WaveNet(n_loop, n_layer, residual_channels, output_dim,
                          n_mels, filter_size, loss_type, log_scale_min)
        # load & freeze upsample_net & teacher
        freeze(teacher)

        student_config = config["student"]
        n_loops = student_config["n_loops"]
        n_layers = student_config["n_layers"]
        student_residual_channels = student_config["residual_channels"]
        student_filter_size = student_config["filter_size"]
        student_log_scale_min = student_config["log_scale_min"]
        student = ParallelWaveNet(n_loops, n_layers, student_residual_channels,
                                  n_mels, student_filter_size)

        stft_config = config["stft"]
        stft = STFT(
            n_fft=stft_config["n_fft"],
            hop_length=stft_config["hop_length"],
            win_length=stft_config["win_length"])

        lmd = config["loss"]["lmd"]
        model = Clarinet(upsample_net, teacher, student, stft,
                         student_log_scale_min, lmd)
        io.load_parameters(model=model, checkpoint_path=checkpoint)

        if not os.path.exists(args.output):
            os.makedirs(args.output)
        model.eval()

        # Rescale mel_spectrogram.
        min_level, ref_level = 1e-5, 20  # hard code it
        mel_spectrogram = 20 * np.log10(np.maximum(min_level, mel_spectrogram))
        mel_spectrogram = mel_spectrogram - ref_level
        mel_spectrogram = np.clip((mel_spectrogram + 100) / 100, 0, 1)

        mel_spectrogram = dg.to_variable(mel_spectrogram)
        mel_spectrogram = fluid.layers.transpose(mel_spectrogram, [0, 2, 1])

        wav_var = model.synthesis(mel_spectrogram)
        wav_np = wav_var.numpy()[0]

        return wav_np


L
lifuchen 已提交
197
if __name__ == '__main__':
198
    parser = argparse.ArgumentParser(description="Synthesis model")
L
lifuchen 已提交
199
    add_config_options_to_parser(parser)
L
lifuchen 已提交
200
    args = parser.parse_args()
201
    pprint(vars(args))
L
lifuchen 已提交
202 203
    synthesis("Simple as this proposition is, it is necessary to be stated,",
              args)