train.py 5.5 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7
import numpy as np
import argparse
import os
import time
import math
import jsonargparse
from pathlib import Path
L
lifuchen 已提交
8 9
from parse import add_config_options_to_parser
from pprint import pprint
L
lifuchen 已提交
10
from tqdm import tqdm
L
lifuchen 已提交
11
from collections import OrderedDict
L
lifuchen 已提交
12 13 14 15
from tensorboardX import SummaryWriter
import paddle.fluid.dygraph as dg
import paddle.fluid.layers as layers
import paddle.fluid as fluid
L
lifuchen 已提交
16 17
from parakeet.models.dataloader.ljspeech import LJSpeechLoader
from parakeet.models.transformerTTS.network import TransformerTTS
L
lifuchen 已提交
18 19 20
from network import FastSpeech
from utils import get_alignment

L
lifuchen 已提交
21 22 23 24 25 26
def load_checkpoint(step, model_path):
    model_dict, opti_dict = fluid.dygraph.load_dygraph(os.path.join(model_path, step))
    new_state_dict = OrderedDict()
    for param in model_dict:
        if param.startswith('_layers.'):
            new_state_dict[param[8:]] = model_dict[param]
L
lifuchen 已提交
27
        else:
L
lifuchen 已提交
28 29
            new_state_dict[param] = model_dict[param]
    return new_state_dict, opti_dict
L
lifuchen 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

def main(cfg):

    local_rank = dg.parallel.Env().local_rank if cfg.use_data_parallel else 0
    nranks = dg.parallel.Env().nranks if cfg.use_data_parallel else 1

    if local_rank == 0:
        # Print the whole config setting.
        pprint(jsonargparse.namespace_to_dict(cfg))

    global_step = 0
    place = (fluid.CUDAPlace(dg.parallel.Env().dev_id)
             if cfg.use_data_parallel else fluid.CUDAPlace(0)
             if cfg.use_gpu else fluid.CPUPlace())

    if not os.path.exists(cfg.log_dir):
            os.mkdir(cfg.log_dir)
    path = os.path.join(cfg.log_dir,'fastspeech')

    writer = SummaryWriter(path) if local_rank == 0 else None

    with dg.guard(place):
L
lifuchen 已提交
52 53
        with fluid.unique_name.guard():
            transformerTTS = TransformerTTS(cfg)
L
lifuchen 已提交
54
            model_dict, _ = load_checkpoint(str(cfg.transformer_step), os.path.join(cfg.transtts_path, "transformer"))
L
lifuchen 已提交
55 56 57
            
            transformerTTS.set_dict(model_dict)
            transformerTTS.eval()
L
lifuchen 已提交
58 59 60

        model = FastSpeech(cfg)
        model.train()
61 62
        optimizer = fluid.optimizer.AdamOptimizer(learning_rate=dg.NoamDecay(1/(cfg.warm_up_step *( cfg.lr ** 2)), cfg.warm_up_step),
                                                  parameter_list=model.parameters())
L
lifuchen 已提交
63
        reader = LJSpeechLoader(cfg, nranks, local_rank, shuffle=True).reader()
L
lifuchen 已提交
64 65
        
        if cfg.checkpoint_path is not None:
L
lifuchen 已提交
66
            model_dict, opti_dict = load_checkpoint(str(cfg.fastspeech_step), os.path.join(cfg.checkpoint_path, "fastspeech"))
L
lifuchen 已提交
67 68
            model.set_dict(model_dict)
            optimizer.set_dict(opti_dict)
L
lifuchen 已提交
69
            global_step = cfg.fastspeech_step
L
lifuchen 已提交
70 71 72 73
            print("load checkpoint!!!")

        if cfg.use_data_parallel:
            strategy = dg.parallel.prepare_context()
L
lifuchen 已提交
74
            model = fluid.dygraph.parallel.DataParallel(model, strategy)
L
lifuchen 已提交
75 76 77 78 79 80

        for epoch in range(cfg.epochs):
            pbar = tqdm(reader)

            for i, data in enumerate(pbar):
                pbar.set_description('Processing at epoch %d'%epoch)
L
lifuchen 已提交
81
                character, mel, mel_input, pos_text, pos_mel, text_length, mel_lens = data
L
lifuchen 已提交
82 83

                _, _, attn_probs, _, _, _ = transformerTTS(character, mel_input, pos_text, pos_mel)
L
lifuchen 已提交
84 85
                alignment = dg.to_variable(get_alignment(attn_probs, mel_lens, cfg.transformer_head)).astype(np.float32)

L
lifuchen 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
                global_step += 1
                    
                #Forward
                result= model(character, 
                              pos_text, 
                              mel_pos=pos_mel,  
                              length_target=alignment)
                mel_output, mel_output_postnet, duration_predictor_output, _, _ = result
                mel_loss = layers.mse_loss(mel_output, mel)
                mel_postnet_loss = layers.mse_loss(mel_output_postnet, mel)
                duration_loss = layers.mean(layers.abs(layers.elementwise_sub(duration_predictor_output, alignment)))
                total_loss = mel_loss + mel_postnet_loss + duration_loss

                if local_rank==0:
                    writer.add_scalar('mel_loss', mel_loss.numpy(), global_step)
                    writer.add_scalar('post_mel_loss', mel_postnet_loss.numpy(), global_step)
                    writer.add_scalar('duration_loss', duration_loss.numpy(), global_step)
                    writer.add_scalar('learning_rate', optimizer._learning_rate.step().numpy(), global_step)


                if cfg.use_data_parallel:
                    total_loss = model.scale_loss(total_loss)
                    total_loss.backward()
                    model.apply_collective_grads()
                else:
                    total_loss.backward()
                optimizer.minimize(total_loss, grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(cfg.grad_clip_thresh))
                model.clear_gradients()

                 # save checkpoint
                if local_rank==0 and global_step % cfg.save_step == 0:
                    if not os.path.exists(cfg.save_path):
                        os.mkdir(cfg.save_path)
                    save_path = os.path.join(cfg.save_path,'fastspeech/%d' % global_step)
                    dg.save_dygraph(model.state_dict(), save_path)
                    dg.save_dygraph(optimizer.state_dict(), save_path)
        if local_rank==0:
            writer.close()


if __name__ =='__main__':
    parser = jsonargparse.ArgumentParser(description="Train Fastspeech model", formatter_class='default_argparse')
    add_config_options_to_parser(parser)
    cfg = parser.parse_args('-c config/fastspeech.yaml'.split())
    main(cfg)