fastspeech.py 7.3 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lifuchen 已提交
14
import math
15
import numpy as np
L
lifuchen 已提交
16 17 18
import paddle.fluid.dygraph as dg
import paddle.fluid as fluid
from parakeet.g2p.text.symbols import symbols
19
from parakeet.models.transformer_tts.utils import *
L
lifuchen 已提交
20
from parakeet.models.transformer_tts.post_convnet import PostConvNet
L
lifuchen 已提交
21
from parakeet.models.fastspeech.length_regulator import LengthRegulator
L
lifuchen 已提交
22 23
from parakeet.models.fastspeech.encoder import Encoder
from parakeet.models.fastspeech.decoder import Decoder
L
lifuchen 已提交
24

L
lifuchen 已提交
25

L
lifuchen 已提交
26 27 28 29 30
class FastSpeech(dg.Layer):
    def __init__(self, cfg):
        " FastSpeech"
        super(FastSpeech, self).__init__()

L
lifuchen 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        self.encoder = Encoder(
            n_src_vocab=len(symbols) + 1,
            len_max_seq=cfg['max_seq_len'],
            n_layers=cfg['encoder_n_layer'],
            n_head=cfg['encoder_head'],
            d_k=cfg['fs_hidden_size'] // cfg['encoder_head'],
            d_v=cfg['fs_hidden_size'] // cfg['encoder_head'],
            d_model=cfg['fs_hidden_size'],
            d_inner=cfg['encoder_conv1d_filter_size'],
            fft_conv1d_kernel=cfg['fft_conv1d_filter'],
            fft_conv1d_padding=cfg['fft_conv1d_padding'],
            dropout=0.1)
        self.length_regulator = LengthRegulator(
            input_size=cfg['fs_hidden_size'],
            out_channels=cfg['duration_predictor_output_size'],
            filter_size=cfg['duration_predictor_filter_size'],
            dropout=cfg['dropout'])
        self.decoder = Decoder(
            len_max_seq=cfg['max_seq_len'],
            n_layers=cfg['decoder_n_layer'],
            n_head=cfg['decoder_head'],
            d_k=cfg['fs_hidden_size'] // cfg['decoder_head'],
            d_v=cfg['fs_hidden_size'] // cfg['decoder_head'],
            d_model=cfg['fs_hidden_size'],
            d_inner=cfg['decoder_conv1d_filter_size'],
            fft_conv1d_kernel=cfg['fft_conv1d_filter'],
            fft_conv1d_padding=cfg['fft_conv1d_padding'],
            dropout=0.1)
        self.weight = fluid.ParamAttr(
            initializer=fluid.initializer.XavierInitializer())
L
lifuchen 已提交
61
        k = math.sqrt(1 / cfg['fs_hidden_size'])
L
lifuchen 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        self.bias = fluid.ParamAttr(initializer=fluid.initializer.Uniform(
            low=-k, high=k))
        self.mel_linear = dg.Linear(
            cfg['fs_hidden_size'],
            cfg['audio']['num_mels'] * cfg['audio']['outputs_per_step'],
            param_attr=self.weight,
            bias_attr=self.bias, )
        self.postnet = PostConvNet(
            n_mels=cfg['audio']['num_mels'],
            num_hidden=512,
            filter_size=5,
            padding=int(5 / 2),
            num_conv=5,
            outputs_per_step=cfg['audio']['outputs_per_step'],
            use_cudnn=True,
            dropout=0.1,
            batchnorm_last=True)
L
lifuchen 已提交
79

L
lifuchen 已提交
80 81 82
    def forward(self,
                character,
                text_pos,
83 84
                enc_non_pad_mask,
                dec_non_pad_mask,
85
                mel_pos=None,
86 87
                enc_slf_attn_mask=None,
                dec_slf_attn_mask=None,
L
lifuchen 已提交
88 89
                length_target=None,
                alpha=1.0):
90 91 92 93
        """
        FastSpeech model.
        
        Args:
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            character (Variable): The input text characters. 
                Shape: (B, T_text), T_text means the timesteps of input characters, dtype: float32.
            text_pos (Variable): The input text position. 
                Shape: (B, T_text), dtype: int64.
            mel_pos (Variable, optional): The spectrum position. 
                Shape: (B, T_mel), T_mel means the timesteps of input spectrum, dtype: int64. 
            enc_non_pad_mask (Variable): the mask with non pad.
                Shape: (B, T_text, 1),
                dtype: int64.
            dec_non_pad_mask (Variable): the mask with non pad.
                Shape: (B, T_mel, 1),
                dtype: int64.
            enc_slf_attn_mask (Variable, optional): the mask of input characters. Defaults to None.
                Shape: (B, T_text, T_text),
                dtype: int64.
            slf_attn_mask (Variable, optional): the mask of mel spectrum. Defaults to None.
                Shape: (B, T_mel, T_mel),
                dtype: int64.
            length_target (Variable, optional): The duration of phoneme compute from pretrained transformerTTS.
                Defaults to None. Shape: (B, T_text), dtype: int64. 
            alpha (float32, optional): The hyperparameter to determine the length of the expanded sequence 
                mel, thereby controlling the voice speed. Defaults to 1.0.
116 117

        Returns:
118 119 120 121 122 123
            mel_output (Variable), the mel output before postnet. Shape: (B, T_mel, C), 
            mel_output_postnet (Variable), the mel output after postnet. Shape: (B, T_mel, C).
            duration_predictor_output (Variable), the duration of phoneme compute with duration predictor. 
                Shape: (B, T_text).
            enc_slf_attn_list (List[Variable]), the encoder self attention list. Len: enc_n_layers.
            dec_slf_attn_list (List[Variable]), the decoder self attention list. Len: dec_n_layers.
124 125
        """

126 127 128 129 130
        encoder_output, enc_slf_attn_list = self.encoder(
            character,
            text_pos,
            enc_non_pad_mask,
            slf_attn_mask=enc_slf_attn_mask)
L
lifuchen 已提交
131
        if fluid.framework._dygraph_tracer()._train_mode:
L
lifuchen 已提交
132 133 134
            length_regulator_output, duration_predictor_output = self.length_regulator(
                encoder_output, target=length_target, alpha=alpha)
            decoder_output, dec_slf_attn_list = self.decoder(
135 136 137 138
                length_regulator_output,
                mel_pos,
                dec_non_pad_mask,
                slf_attn_mask=dec_slf_attn_mask)
L
lifuchen 已提交
139 140 141 142 143 144

            mel_output = self.mel_linear(decoder_output)
            mel_output_postnet = self.postnet(mel_output) + mel_output

            return mel_output, mel_output_postnet, duration_predictor_output, enc_slf_attn_list, dec_slf_attn_list
        else:
L
lifuchen 已提交
145 146
            length_regulator_output, decoder_pos = self.length_regulator(
                encoder_output, alpha=alpha)
147 148 149 150
            slf_attn_mask = get_triu_tensor(
                decoder_pos.numpy(), decoder_pos.numpy()).astype(np.float32)
            slf_attn_mask = fluid.layers.cast(
                dg.to_variable(slf_attn_mask == 0), np.float32)
151
            slf_attn_mask = dg.to_variable(slf_attn_mask)
152 153 154 155 156 157 158
            dec_non_pad_mask = fluid.layers.unsqueeze(
                (decoder_pos != 0).astype(np.float32), [-1])
            decoder_output, _ = self.decoder(
                length_regulator_output,
                decoder_pos,
                dec_non_pad_mask,
                slf_attn_mask=slf_attn_mask)
L
lifuchen 已提交
159 160 161
            mel_output = self.mel_linear(decoder_output)
            mel_output_postnet = self.postnet(mel_output) + mel_output

L
lifuchen 已提交
162
            return mel_output, mel_output_postnet