utils.py 2.5 KB
Newer Older
C
chenfeiyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import division
C
chenfeiyu 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
import os
import numpy as np
import soundfile as sf
import paddle.fluid.dygraph as dg


def make_output_tree(output_dir):
    checkpoint_dir = os.path.join(output_dir, "checkpoints")
    if not os.path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)

    state_dir = os.path.join(output_dir, "states")
    if not os.path.exists(state_dir):
        os.makedirs(state_dir)


def valid_model(model, valid_loader, writer, global_step, sample_rate):
    loss = []
    wavs = []
    model.eval()
    for i, batch in enumerate(valid_loader):
        # print("sentence {}".format(i))
        audio_clips, mel_specs, audio_starts = batch
        y_var = model(audio_clips, mel_specs, audio_starts)
        wav_var = model.sample(y_var)
        loss_var = model.loss(y_var, audio_clips)
        loss.append(loss_var.numpy()[0])
        wavs.append(wav_var.numpy()[0])

    average_loss = np.mean(loss)
    writer.add_scalar("valid_loss", average_loss, global_step)
    for i, wav in enumerate(wavs):
        writer.add_audio("valid/sample_{}".format(i), wav, global_step,
                         sample_rate)


def eval_model(model, valid_loader, output_dir, sample_rate):
    model.eval()
    for i, batch in enumerate(valid_loader):
        # print("sentence {}".format(i))
        path = os.path.join(output_dir, "sentence_{}.wav".format(i))
        audio_clips, mel_specs, audio_starts = batch
        wav_var = model.synthesis(mel_specs)
        wav_np = wav_var.numpy()[0]
C
chenfeiyu 已提交
60
        sf.write(path, wav_np, samplerate=sample_rate)
C
chenfeiyu 已提交
61 62 63 64 65 66 67 68
        print("generated {}".format(path))


def save_checkpoint(model, optim, checkpoint_dir, global_step):
    checkpoint_path = os.path.join(checkpoint_dir,
                                   "step_{:09d}".format(global_step))
    dg.save_dygraph(model.state_dict(), checkpoint_path)
    dg.save_dygraph(optim.state_dict(), checkpoint_path)