data.py 6.6 KB
Newer Older
L
lifuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12
from pathlib import Path
import numpy as np
import pandas as pd
import librosa
import csv

from paddle import fluid
from parakeet import g2p
from parakeet import audio
from parakeet.data.sampler import *
from parakeet.data.datacargo import DataCargo
from parakeet.data.batch import TextIDBatcher, SpecBatcher
13 14
from parakeet.data.dataset import DatasetMixin, TransformDataset, CacheDataset
from parakeet.models.transformer_tts.utils import *
L
lifuchen 已提交
15 16

class LJSpeechLoader:
L
lifuchen 已提交
17 18
    def __init__(self, config, args, nranks, rank, is_vocoder=False, shuffle=True):
        place = fluid.CUDAPlace(rank) if args.use_gpu else fluid.CPUPlace()
L
lifuchen 已提交
19

L
lifuchen 已提交
20
        LJSPEECH_ROOT = Path(args.data_path)
L
lifuchen 已提交
21 22 23
        metadata = LJSpeechMetaData(LJSPEECH_ROOT)
        transformer = LJSpeech(config)
        dataset = TransformDataset(metadata, transformer)
24 25
        dataset = CacheDataset(dataset)

L
lifuchen 已提交
26 27
        sampler = DistributedSampler(len(metadata), nranks, rank, shuffle=shuffle)

L
lifuchen 已提交
28 29
        assert args.batch_size % nranks == 0
        each_bs = args.batch_size // nranks
L
lifuchen 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        if is_vocoder:
            dataloader = DataCargo(dataset, sampler=sampler, batch_size=each_bs, shuffle=shuffle, batch_fn=batch_examples_vocoder, drop_last=True)
        else:
            dataloader = DataCargo(dataset, sampler=sampler, batch_size=each_bs, shuffle=shuffle, batch_fn=batch_examples, drop_last=True)
        
        self.reader = fluid.io.DataLoader.from_generator(
            capacity=32,
            iterable=True,
            use_double_buffer=True,
            return_list=True)
        self.reader.set_batch_generator(dataloader, place)


class LJSpeechMetaData(DatasetMixin):
    def __init__(self, root):
        self.root = Path(root)
        self._wav_dir = self.root.joinpath("wavs")
        csv_path = self.root.joinpath("metadata.csv")
        self._table = pd.read_csv(
            csv_path,
            sep="|",
            header=None,
            quoting=csv.QUOTE_NONE,
            names=["fname", "raw_text", "normalized_text"])

    def get_example(self, i):
        fname, raw_text, normalized_text = self._table.iloc[i]
        fname = str(self._wav_dir.joinpath(fname + ".wav"))
        return fname, raw_text, normalized_text

    def __len__(self):
        return len(self._table)


class LJSpeech(object):
    def __init__(self, config):
        super(LJSpeech, self).__init__()
        self.config = config
        self._ljspeech_processor = audio.AudioProcessor(
L
lifuchen 已提交
69 70 71 72 73 74 75 76 77
            sample_rate=config['audio']['sr'], 
            num_mels=config['audio']['num_mels'], 
            min_level_db=config['audio']['min_level_db'], 
            ref_level_db=config['audio']['ref_level_db'], 
            n_fft=config['audio']['n_fft'], 
            win_length= config['audio']['win_length'], 
            hop_length= config['audio']['hop_length'],
            power=config['audio']['power'],
            preemphasis=config['audio']['preemphasis'],
L
lifuchen 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
            signal_norm=True,
            symmetric_norm=False,
            max_norm=1.,
            mel_fmin=0,
            mel_fmax=None,
            clip_norm=True,
            griffin_lim_iters=60,
            do_trim_silence=False,
            sound_norm=False)
            
    def __call__(self, metadatum):
        """All the code for generating an Example from a metadatum. If you want a 
        different preprocessing pipeline, you can override this method. 
        This method may require several processor, each of which has a lot of options.
        In this case, you'd better pass a composed transform and pass it to the init
        method.
        """
        fname, raw_text, normalized_text = metadatum
        
        # load -> trim -> preemphasis -> stft -> magnitude -> mel_scale -> logscale -> normalize
        wav = self._ljspeech_processor.load_wav(str(fname))
        mag = self._ljspeech_processor.spectrogram(wav).astype(np.float32)
        mel = self._ljspeech_processor.melspectrogram(wav).astype(np.float32)
        phonemes = np.array(g2p.en.text_to_sequence(normalized_text), dtype=np.int64)
        return (mag, mel, phonemes) # maybe we need to implement it as a map in the future


def batch_examples(batch):
    texts = []
    mels = []
    mel_inputs = []
    mel_lens = []
    text_lens = []
    pos_texts = []
    pos_mels = []
    for data in batch:
        _, mel, text = data
        mel_inputs.append(np.concatenate([np.zeros([mel.shape[0], 1], np.float32), mel[:,:-1]], axis=-1))
        mel_lens.append(mel.shape[1])
        text_lens.append(len(text))
        pos_texts.append(np.arange(1, len(text) + 1))
        pos_mels.append(np.arange(1, mel.shape[1] + 1))
        mels.append(mel)
        texts.append(text)
    
    # Sort by text_len in descending order
    texts = [i for i,_ in sorted(zip(texts, text_lens), key=lambda x: x[1], reverse=True)]
    mels = [i for i,_ in sorted(zip(mels, text_lens), key=lambda x: x[1], reverse=True)]
    mel_inputs = [i for i,_ in sorted(zip(mel_inputs, text_lens), key=lambda x: x[1], reverse=True)]
    mel_lens = [i for i,_ in sorted(zip(mel_lens, text_lens), key=lambda x: x[1], reverse=True)]
    pos_texts = [i for i,_ in sorted(zip(pos_texts, text_lens), key=lambda x: x[1], reverse=True)]
    pos_mels = [i for i,_ in sorted(zip(pos_mels, text_lens), key=lambda x: x[1], reverse=True)]
    text_lens = sorted(text_lens, reverse=True)

    # Pad sequence with largest len of the batch
    texts = TextIDBatcher(pad_id=0)(texts)   #(B, T)
    pos_texts = TextIDBatcher(pad_id=0)(pos_texts) #(B,T)
    pos_mels = TextIDBatcher(pad_id=0)(pos_mels) #(B,T)
    mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1)) #(B,T,num_mels)
    mel_inputs = np.transpose(SpecBatcher(pad_value=0.)(mel_inputs), axes=(0,2,1))#(B,T,num_mels)
138 139 140 141 142 143 144 145 146
    enc_slf_mask = get_attn_key_pad_mask(pos_texts, texts).astype(np.float32)
    enc_query_mask = get_non_pad_mask(pos_texts).astype(np.float32)
    dec_slf_mask = get_dec_attn_key_pad_mask(pos_mels,mel_inputs).astype(np.float32)
    enc_dec_mask = get_attn_key_pad_mask(enc_query_mask[:,:,0], mel_inputs).astype(np.float32)
    dec_query_slf_mask = get_non_pad_mask(pos_mels).astype(np.float32)
    dec_query_mask = get_non_pad_mask(pos_mels).astype(np.float32)

    return (texts, mels, mel_inputs, pos_texts, pos_mels, np.array(text_lens), np.array(mel_lens),
            enc_slf_mask, enc_query_mask, dec_slf_mask, enc_dec_mask, dec_query_slf_mask, dec_query_mask)
L
lifuchen 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

def batch_examples_vocoder(batch):
    mels=[]
    mags=[]
    for data in batch:
        mag, mel, _ = data
        mels.append(mel)
        mags.append(mag)

    mels = np.transpose(SpecBatcher(pad_value=0.)(mels), axes=(0,2,1))
    mags = np.transpose(SpecBatcher(pad_value=0.)(mags), axes=(0,2,1))

    return (mels, mags)