提交 eab7a362 编写于 作者: J jack

extract export model doc

上级 5e88c602
# 部署模型导出
在服务端部署的模型需要首先将模型导出为inference格式模型,导出的模型将包括`__model__``__params__``model.yml`三个文名,分别为模型的网络结构,模型权重和模型的配置文件(包括数据预处理参数等等)。在安装完PaddleX后,在命令行终端使用如下命令导出模型到当前目录`inferece_model`下。
> 可直接下载小度熊分拣模型测试本文档的流程[xiaoduxiong_epoch_12.tar.gz](https://bj.bcebos.com/paddlex/models/xiaoduxiong_epoch_12.tar.gz)
```
paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model
```
使用TensorRT预测时,需指定模型的图像输入shape:[w,h]。
**注**
- 分类模型请保持于训练时输入的shape一致。
- 指定[w,h]时,w和h中间逗号隔开,不允许存在空格等其他字符
```
paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model --fixed_input_shape=[640,960]
```
......@@ -98,7 +98,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
### Step4: 预测及可视化
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../python.html#inference)将模型导出为部署格式。**
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](export_model.md)将模型导出为部署格式。**
编译成功后,预测demo的可执行程序分别为`build/demo/detector``build/demo/classifier``build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
......@@ -118,7 +118,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
## 样例
可使用[小度熊识别模型](../python.html#inference)中导出的`inference_model`和测试图片进行预测,导出到/root/projects,模型路径为/root/projects/inference_model。
可使用[小度熊识别模型](export_model.md)中导出的`inference_model`和测试图片进行预测,导出到/root/projects,模型路径为/root/projects/inference_model。
`样例一`
......
......@@ -114,7 +114,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
### Step4: 预测及可视化
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../python.html#inference)将模型导出为部署格式。**
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../../export_model.md)将模型导出为部署格式。**
编译成功后,预测demo的可执行程序分别为`build/demo/detector``build/demo/classifier``build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
......@@ -134,7 +134,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
## 样例
可使用[小度熊识别模型](../python.html#inference)中导出的`inference_model`和测试图片进行预测,导出到/root/projects,模型路径为/root/projects/inference_model。
可使用[小度熊识别模型](../../export_model.md)中导出的`inference_model`和测试图片进行预测,导出到/root/projects,模型路径为/root/projects/inference_model。
`样例一`
......
......@@ -101,7 +101,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
### Step5: 预测及可视化
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../python.html#inference)将模型导出为部署格式。**
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../../export_model.md)将模型导出为部署格式。**
上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录:
......@@ -127,7 +127,7 @@ cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release
## 样例
可使用[小度熊识别模型](../python.md)中导出的`inference_model`和测试图片进行预测, 例如导出到D:\projects,模型路径为D:\projects\inference_model。
可使用[小度熊识别模型](../../export_model.md)中导出的`inference_model`和测试图片进行预测, 例如导出到D:\projects,模型路径为D:\projects\inference_model。
### 样例一:(使用未加密的模型对单张图像做预测)
......
......@@ -28,7 +28,7 @@ PaddleX提供一个轻量级的模型加密部署方案,通过PaddleX内置的
>
> 3)实现AES算法接口,借助OpenSSL提供的EVP接口,在EVP接口中指定算法类型,算法使用对称加解密算法中的AES,加解密模式使用AES-GCM, 密钥长度为256位,AES-GCM的实现可以参考官方提供的例子自己进行封装接口:[AES-GCM实现](https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption)。
>
> 4)利用OpenSSL库实现SHA256摘要算法,这部分下面有用(可选)。关于SHA256的hash计算可以参考OpenSSL提供的example:[OpenSSL 信息摘要例子](https://wiki.openssl.org/index.php/EVP_Message_Digests)
> 4)利用OpenSSL库实现SHA256摘要算法,这部分下面有用(可选)。关于SHA256的hash计算可以参考OpenSSL提供的example:[OpenSSL 信息摘要例子](https://wiki.openssl.org/index.php/EVP_Message_Digests)
>
> 5)在模型加密环节直接对model文件和params文件的数据内容进行加密后保存到新的文件,为了新的文件能够被区分和可迭代,除了加密后的数据外还添加了头部信息,比如为了判断该文件类型使用固定的魔数作为文件的开头;为了便于后面需求迭代写入版本号以示区别;为了能够在解密时判断是否采用了相同的密钥将加密时的密钥进行SHA256计算后存储;这三部分构成了目前加密后文件的头部信息。加密后的文件包含头部信息 + 密文信息。
>
......@@ -80,7 +80,7 @@ Windows平台:
.\paddlex-encryption\tool\paddlex_encrypt_tool.exe -model_dir D:\projects\paddlex_inference_model -save_dir D:\projects\paddlex_encrypted_model
```
`-model_dir`用于指定inference模型路径(参考[导出inference模型](python.html#inference)将模型导出为inference格式模型),可使用[导出小度熊识别模型](python.html#inference)中导出的`inference_model`。加密完成后,加密过的模型会保存至指定的`-save_dir`下,包含`__model__.encrypted``__params__.encrypted``model.yml`三个文件,同时生成密钥信息,命令输出如下图所示,密钥为`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`
`-model_dir`用于指定inference模型路径(参考[导出inference模型](../export_model.md)将模型导出为inference格式模型),可使用[导出小度熊识别模型](../export_model.md)中导出的`inference_model`。加密完成后,加密过的模型会保存至指定的`-save_dir`下,包含`__model__.encrypted``__params__.encrypted``model.yml`三个文件,同时生成密钥信息,命令输出如下图所示,密钥为`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`
![](../images/encrypt.png)
......@@ -106,7 +106,7 @@ Windows平台:
### 样例
可使用[导出小度熊识别模型](python.html#inference)中的测试图片进行预测。
可使用[导出小度熊识别模型](../export_model.md)中的测试图片进行预测。
#### 样例一:
......@@ -137,7 +137,7 @@ Windows平台:
### 样例
可使用[导出小度熊识别模型](python.html#inference)中的测试图片进行预测。
可使用[导出小度熊识别模型](../export_model.md)中的测试图片进行预测。
#### 样例一:
......
# Python部署
PaddleX已经集成了基于Python的高性能预测接口,在安装PaddleX后,可参照如下代码示例,进行预测。相关的接口文档可参考[paddlex.deploy](../../../apis/deploy.md)
## 导出inference模型
在服务端部署的模型需要首先将模型导出为inference格式模型,导出的模型将包括`__model__``__params__``model.yml`三个文名,分别为模型的网络结构,模型权重和模型的配置文件(包括数据预处理参数等等)。在安装完PaddleX后,在命令行终端使用如下命令导出模型到当前目录`inferece_model`下。
> 可直接下载小度熊分拣模型测试本文档的流程[xiaoduxiong_epoch_12.tar.gz](https://bj.bcebos.com/paddlex/models/xiaoduxiong_epoch_12.tar.gz)
```
paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model
```
使用TensorRT预测时,需指定模型的图像输入shape:[w,h]。
**注**
- 分类模型请保持于训练时输入的shape一致。
- 指定[w,h]时,w和h中间逗号隔开,不允许存在空格等其他字符
```
paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model --fixed_input_shape=[640,960]
```
## 导出预测模型
可参考[模型导出](../export_model.md)将模型导出为inference格式的模型。
## 预测部署
**注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../upgrade_version.md)对模型版本进行升级。**
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册