Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
e1d60414
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e1d60414
编写于
7月 13, 2020
作者:
F
FlyingQianMM
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add r18_fpn pretrained weights for rcnn
上级
0180098e
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
15 addition
and
8 deletion
+15
-8
docs/appendix/model_zoo.md
docs/appendix/model_zoo.md
+2
-0
docs/train/instance_segmentation.md
docs/train/instance_segmentation.md
+3
-3
docs/train/object_detection.md
docs/train/object_detection.md
+2
-2
paddlex/cv/models/utils/pretrain_weights.py
paddlex/cv/models/utils/pretrain_weights.py
+8
-3
未找到文件。
docs/appendix/model_zoo.md
浏览文件 @
e1d60414
...
@@ -36,6 +36,7 @@
...
@@ -36,6 +36,7 @@
| 模型 | 模型大小 | 预测时间(毫秒) | BoxAP(%) |
| 模型 | 模型大小 | 预测时间(毫秒) | BoxAP(%) |
|:-------|:-----------|:-------------|:----------|
|:-------|:-----------|:-------------|:----------|
|
[
FasterRCNN-ResNet18-FPN
](
https://bj.bcebos.com/paddlex/pretrained_weights/faster_rcnn_r18_fpn_1x.tar
)
| 173.2M | - | 32.6 |
|
[
FasterRCNN-ResNet50
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar
)
|136.0MB| 197.715 | 35.2 |
|
[
FasterRCNN-ResNet50
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar
)
|136.0MB| 197.715 | 35.2 |
|
[
FasterRCNN-ResNet50_vd
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar
)
| 136.1MB | 475.700 | 36.4 |
|
[
FasterRCNN-ResNet50_vd
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar
)
| 136.1MB | 475.700 | 36.4 |
|
[
FasterRCNN-ResNet101
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar
)
| 212.5MB | 582.911 | 38.3 |
|
[
FasterRCNN-ResNet101
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar
)
| 212.5MB | 582.911 | 38.3 |
...
@@ -55,6 +56,7 @@
...
@@ -55,6 +56,7 @@
| 模型 | 模型大小 | 预测时间(毫秒) | BoxAP (%) | MaskAP (%) |
| 模型 | 模型大小 | 预测时间(毫秒) | BoxAP (%) | MaskAP (%) |
|:-------|:-----------|:-------------|:----------|:----------|
|:-------|:-----------|:-------------|:----------|:----------|
|
[
MaskRCNN-ResNet18-FPN
](
https://bj.bcebos.com/paddlex/pretrained_weights/mask_rcnn_r18_fpn_1x.tar
)
| 189.1MB | - | 33.6 | 30.5 |
|
[
MaskRCNN-ResNet50
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar
)
| 143.9MB | 87 | 38.2 | 33.4 |
|
[
MaskRCNN-ResNet50
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar
)
| 143.9MB | 87 | 38.2 | 33.4 |
|
[
MaskRCNN-ResNet50-FPN
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar
)
| 177.7MB | 63.9 | 38.7 | 34.7 |
|
[
MaskRCNN-ResNet50-FPN
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar
)
| 177.7MB | 63.9 | 38.7 | 34.7 |
|
[
MaskRCNN-ResNet50_vd-FPN
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar
)
| 177.7MB | 63.1 | 39.8 || 35.4 |
|
[
MaskRCNN-ResNet50_vd-FPN
](
https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar
)
| 177.7MB | 63.1 | 39.8 || 35.4 |
...
...
docs/train/instance_segmentation.md
浏览文件 @
e1d60414
...
@@ -10,9 +10,9 @@ PaddleX目前提供了MaskRCNN实例分割模型结构,多种backbone模型,
...
@@ -10,9 +10,9 @@ PaddleX目前提供了MaskRCNN实例分割模型结构,多种backbone模型,
| 模型(点击获取代码) | Box MMAP/Seg MMAP | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
| 模型(点击获取代码) | Box MMAP/Seg MMAP | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
|
[
MaskRCNN-ResNet50-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py
)
| 38.7%/34.7% | 17
0.0
MB | 160.185ms | - | 模型精度高,适用于服务端部署 |
|
[
MaskRCNN-ResNet50-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py
)
| 38.7%/34.7% | 17
7.7
MB | 160.185ms | - | 模型精度高,适用于服务端部署 |
|
[
MaskRCNN-ResNet18-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_r18_fpn.py
)
|
-/- | 120.0
MB | - | - | 模型精度高,适用于服务端部署 |
|
[
MaskRCNN-ResNet18-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_r18_fpn.py
)
|
33.6/30.5 | 189.1
MB | - | - | 模型精度高,适用于服务端部署 |
|
[
MaskRCNN-HRNet-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py
)
| 38.7%/34.7% | 1
16.
MB | - | - | 模型精度高,预测速度快,适用于服务端部署 |
|
[
MaskRCNN-HRNet-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py
)
| 38.7%/34.7% | 1
20.7
MB | - | - | 模型精度高,预测速度快,适用于服务端部署 |
## 开始训练
## 开始训练
...
...
docs/train/object_detection.md
浏览文件 @
e1d60414
...
@@ -13,8 +13,8 @@ PaddleX目前提供了FasterRCNN和YOLOv3两种检测结构,多种backbone模型
...
@@ -13,8 +13,8 @@ PaddleX目前提供了FasterRCNN和YOLOv3两种检测结构,多种backbone模型
|
[
YOLOv3-MobileNetV1
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_mobilenetv1.py
)
| 29.3% | 99.2MB | 15.442ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
YOLOv3-MobileNetV1
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_mobilenetv1.py
)
| 29.3% | 99.2MB | 15.442ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
YOLOv3-MobileNetV3
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_mobilenetv3.py
)
| 31.6% | 100.7MB | 143.322ms | - | 模型小,移动端上预测速度有优势 |
|
[
YOLOv3-MobileNetV3
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_mobilenetv3.py
)
| 31.6% | 100.7MB | 143.322ms | - | 模型小,移动端上预测速度有优势 |
|
[
YOLOv3-DarkNet53
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_darknet53.py
)
| 38.9 | 249.2MB | 42.672ms | - | 模型较大,预测速度快,适用于服务端 |
|
[
YOLOv3-DarkNet53
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_darknet53.py
)
| 38.9 | 249.2MB | 42.672ms | - | 模型较大,预测速度快,适用于服务端 |
|
[
FasterRCNN-ResNet50-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_r50_fpn.py
)
| 37.2% | 1
36.0
MB | 197.715ms | - | 模型精度高,适用于服务端部署 |
|
[
FasterRCNN-ResNet50-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_r50_fpn.py
)
| 37.2% | 1
67.7
MB | 197.715ms | - | 模型精度高,适用于服务端部署 |
|
[
FasterRCNN-ResNet18-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_r18_fpn.py
)
|
- | -
| - | - | 模型精度高,适用于服务端部署 |
|
[
FasterRCNN-ResNet18-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_r18_fpn.py
)
|
32.6% | 173.2MB
| - | - | 模型精度高,适用于服务端部署 |
|
[
FasterRCNN-HRNet-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py
)
| 36.0% | 115.MB | 81.592ms | - | 模型精度高,预测速度快,适用于服务端部署 |
|
[
FasterRCNN-HRNet-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py
)
| 36.0% | 115.MB | 81.592ms | - | 模型精度高,预测速度快,适用于服务端部署 |
...
...
paddlex/cv/models/utils/pretrain_weights.py
浏览文件 @
e1d60414
...
@@ -88,6 +88,8 @@ coco_pretrain = {
...
@@ -88,6 +88,8 @@ coco_pretrain = {
'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar'
,
'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar'
,
'YOLOv3_ResNet50_vd_COCO'
:
'YOLOv3_ResNet50_vd_COCO'
:
'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar'
,
'https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar'
,
'FasterRCNN_ResNet18_COCO'
:
'https://bj.bcebos.com/paddlex/pretrained_weights/faster_rcnn_r18_fpn_1x.tar'
,
'FasterRCNN_ResNet50_COCO'
:
'FasterRCNN_ResNet50_COCO'
:
'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar'
,
'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar'
,
'FasterRCNN_ResNet50_vd_COCO'
:
'FasterRCNN_ResNet50_vd_COCO'
:
...
@@ -98,6 +100,8 @@ coco_pretrain = {
...
@@ -98,6 +100,8 @@ coco_pretrain = {
'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar'
,
'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar'
,
'FasterRCNN_HRNet_W18_COCO'
:
'FasterRCNN_HRNet_W18_COCO'
:
'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_2x.tar'
,
'https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_2x.tar'
,
'MaskRCNN_ResNet18_COCO'
:
'https://bj.bcebos.com/paddlex/pretrained_weights/mask_rcnn_r18_fpn_1x.tar'
,
'MaskRCNN_ResNet50_COCO'
:
'MaskRCNN_ResNet50_COCO'
:
'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar'
,
'https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar'
,
'MaskRCNN_ResNet50_vd_COCO'
:
'MaskRCNN_ResNet50_vd_COCO'
:
...
@@ -136,9 +140,10 @@ def get_pretrain_weights(flag, class_name, backbone, save_dir):
...
@@ -136,9 +140,10 @@ def get_pretrain_weights(flag, class_name, backbone, save_dir):
return
flag
return
flag
warning_info
=
"{} does not support to be finetuned with weights pretrained on the {} dataset, so pretrain_weights is forced to be set to {}"
warning_info
=
"{} does not support to be finetuned with weights pretrained on the {} dataset, so pretrain_weights is forced to be set to {}"
if
flag
==
'COCO'
:
if
flag
==
'COCO'
:
if
class_name
==
"FasterRCNN"
and
backbone
in
[
'ResNet18'
]
or
\
if
class_name
==
'DeepLabv3p'
and
backbone
in
[
class_name
==
"MaskRCNN"
and
backbone
in
[
'ResNet18'
]
or
\
'Xception41'
,
'MobileNetV2_x0.25'
,
'MobileNetV2_x0.5'
,
class_name
==
'DeepLabv3p'
and
backbone
in
[
'Xception41'
,
'MobileNetV2_x0.25'
,
'MobileNetV2_x0.5'
,
'MobileNetV2_x1.5'
,
'MobileNetV2_x2.0'
]:
'MobileNetV2_x1.5'
,
'MobileNetV2_x2.0'
]:
model_name
=
'{}_{}'
.
format
(
class_name
,
backbone
)
model_name
=
'{}_{}'
.
format
(
class_name
,
backbone
)
logging
.
warning
(
warning_info
.
format
(
model_name
,
flag
,
'IMAGENET'
))
logging
.
warning
(
warning_info
.
format
(
model_name
,
flag
,
'IMAGENET'
))
flag
=
'IMAGENET'
flag
=
'IMAGENET'
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录