提交 e08f6d65 编写于 作者: J jack

use specific path instead of abstract path

上级 26e33ea5
...@@ -4,10 +4,10 @@ WITH_GPU=OFF ...@@ -4,10 +4,10 @@ WITH_GPU=OFF
WITH_MKL=ON WITH_MKL=ON
# 是否集成 TensorRT(仅WITH_GPU=ON 有效) # 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=OFF WITH_TENSORRT=OFF
# TensorRT 的路径 # TensorRT 的路径,如果需要集成TensorRT,需修改为您实际安装的TensorRT路径
TENSORRT_DIR=/path/to/TensorRT/ TENSORRT_DIR=/root/projects/TensorRT/
# Paddle 预测库路径 # Paddle 预测库路径, 请修改为您实际安装的预测库路径
PADDLE_DIR=/docker/jiangjiajun/PaddleDetection/deploy/cpp/fluid_inference PADDLE_DIR=/root/projects/fluid_inference
# Paddle 的预测库是否使用静态库来编译 # Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库 # 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB=OFF WITH_STATIC_LIB=OFF
...@@ -16,7 +16,7 @@ CUDA_LIB=/usr/local/cuda/lib64 ...@@ -16,7 +16,7 @@ CUDA_LIB=/usr/local/cuda/lib64
# CUDNN 的 lib 路径 # CUDNN 的 lib 路径
CUDNN_LIB=/usr/local/cuda/lib64 CUDNN_LIB=/usr/local/cuda/lib64
# 是否加载加密后的模型 # 是否加载加密后的模型
WITH_ENCRYPTION=ON WITH_ENCRYPTION=ON
# 加密工具的路径, 如果使用自带预编译版本可不修改 # 加密工具的路径, 如果使用自带预编译版本可不修改
sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的加密工具 sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的加密工具
......
...@@ -55,17 +55,17 @@ WITH_GPU=OFF ...@@ -55,17 +55,17 @@ WITH_GPU=OFF
WITH_MKL=ON WITH_MKL=ON
# 是否集成 TensorRT(仅WITH_GPU=ON 有效) # 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=OFF WITH_TENSORRT=OFF
# TensorRT 的lib路径 # TensorRT 的路径,如果需要集成TensorRT,需修改为您实际安装的TensorRT路径
TENSORRT_DIR=/path/to/TensorRT/ TENSORRT_DIR=/root/projects/TensorRT/
# Paddle 预测库路径 # Paddle 预测库路径, 请修改为您实际安装的预测库路径
PADDLE_DIR=/path/to/fluid_inference/ PADDLE_DIR=/root/projects/fluid_inference
# Paddle 的预测库是否使用静态库来编译 # Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库 # 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB=ON WITH_STATIC_LIB=OFF
# CUDA 的 lib 路径 # CUDA 的 lib 路径
CUDA_LIB=/path/to/cuda/lib/ CUDA_LIB=/usr/local/cuda/lib64
# CUDNN 的 lib 路径 # CUDNN 的 lib 路径
CUDNN_LIB=/path/to/cudnn/lib/ CUDNN_LIB=/usr/local/cuda/lib64
# 是否加载加密后的模型 # 是否加载加密后的模型
WITH_ENCRYPTION=ON WITH_ENCRYPTION=ON
...@@ -74,8 +74,8 @@ sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的加密工具 ...@@ -74,8 +74,8 @@ sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的加密工具
ENCRYPTION_DIR=$(pwd)/paddlex-encryption ENCRYPTION_DIR=$(pwd)/paddlex-encryption
# OPENCV 路径, 如果使用自带预编译版本可不修改 # OPENCV 路径, 如果使用自带预编译版本可不修改
sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的opencv
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/ OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/
sh $(pwd)/scripts/bootstrap.sh
# 以下无需改动 # 以下无需改动
rm -rf build rm -rf build
...@@ -94,7 +94,6 @@ cmake .. \ ...@@ -94,7 +94,6 @@ cmake .. \
-DENCRYPTION_DIR=${ENCRYPTION_DIR} \ -DENCRYPTION_DIR=${ENCRYPTION_DIR} \
-DOPENCV_DIR=${OPENCV_DIR} -DOPENCV_DIR=${OPENCV_DIR}
make make
``` ```
**注意:** linux环境下编译会自动下载OPENCV, PaddleX-Encryption和YAML,如果编译环境无法访问外网,可手动下载: **注意:** linux环境下编译会自动下载OPENCV, PaddleX-Encryption和YAML,如果编译环境无法访问外网,可手动下载:
...@@ -127,7 +126,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https:// ...@@ -127,7 +126,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
| image | 要预测的图片文件路径 | | image | 要预测的图片文件路径 |
| image_list | 按行存储图片路径的.txt文件 | | image_list | 按行存储图片路径的.txt文件 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) | | use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| use_trt | 是否使用 TensorTr 预测, 支持值为0或1(默认值为0) | | use_trt | 是否使用 TensorRT 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 | | gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output",**classfier无该参数** | | save_dir | 保存可视化结果的路径, 默认值为"output",**classfier无该参数** |
| key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 | | key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
...@@ -136,28 +135,28 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https:// ...@@ -136,28 +135,28 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
## 样例 ## 样例
可使用[小度熊识别模型](../deploy_python.html#inference)中导出的`inference_model`和测试图片进行预测。 可使用[小度熊识别模型](../deploy_python.html#inference)中导出的`inference_model`和测试图片进行预测,导出到/root/projects,模型路径为/root/projects/inference_model
`样例一` `样例一`
不使用`GPU`测试图片 `/path/to/xiaoduxiong.jpeg` 不使用`GPU`测试图片 `/root/projects/images/xiaoduxiong.jpeg`
```shell ```shell
./build/demo/detector --model_dir=/path/to/inference_model --image=/path/to/xiaoduxiong.jpeg --save_dir=output ./build/demo/detector --model_dir=/root/projects/inference_model --image=/root/projects/images/xiaoduxiong.jpeg --save_dir=output
``` ```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
`样例二`: `样例二`:
使用`GPU`预测多个图片`/path/to/image_list.txt`,image_list.txt内容的格式如下: 使用`GPU`预测多个图片`/root/projects/image_list.txt`,image_list.txt内容的格式如下:
``` ```
/path/to/images/xiaoduxiong1.jpeg /root/projects/images/xiaoduxiong1.jpeg
/path/to/images/xiaoduxiong2.jpeg /root/projects/images/xiaoduxiong2.jpeg
... ...
/path/to/images/xiaoduxiongn.jpeg /root/projects/images/xiaoduxiongn.jpeg
``` ```
```shell ```shell
./build/demo/detector --model_dir=/path/to/models/inference_model --image_list=/root/projects/images_list.txt --use_gpu=1 --save_dir=output --batch_size=2 --thread_num=2 ./build/demo/detector --model_dir=/root/projects/inference_model --image_list=/root/projects/images_list.txt --use_gpu=1 --save_dir=output --batch_size=2 --thread_num=2
``` ```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
...@@ -86,7 +86,7 @@ PaddlePaddle C++ 预测库针对不同的`CPU`,`CUDA`,以及是否支持Tens ...@@ -86,7 +86,7 @@ PaddlePaddle C++ 预测库针对不同的`CPU`,`CUDA`,以及是否支持Tens
2. 如果使用的是`openblas`版本,请把`WITH_MKL`的``去掉勾 2. 如果使用的是`openblas`版本,请把`WITH_MKL`的``去掉勾
3. Windows环境下编译会自动下载YAML,如果编译环境无法访问外网,可手动下载: [yaml-cpp.zip](https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip) 3. Windows环境下编译会自动下载YAML,如果编译环境无法访问外网,可手动下载: [yaml-cpp.zip](https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip)
yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip` 中的网址,改为下载文件的路径。 yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip` 中的网址,改为下载文件的路径。
4. 如果需要使用模型加密功能,需要手动下载[Windows预测模型加密工具](https://bj.bcebos.com/paddlex/tools/win/paddlex-encryption.zip),解压到某目录\\\\path\\\\to\\\\paddlex-encryption。编译时需勾选WITH_EBNCRYPTION并且在ENCRTYPTION_DIR填入\\\\path\\\\to\\\\paddlex-encryption。 4. 如果需要使用模型加密功能,需要手动下载[Windows预测模型加密工具](https://bj.bcebos.com/paddlex/tools/win/paddlex-encryption.zip),解压到D:/projects。解压后目录为D:/projects/paddlex-encryption。编译时需勾选WITH_EBNCRYPTION并且在ENCRTYPTION_DIR填入D:/projects/paddlex-encryption。
![step_encryption](../../images/vs2019_step_encryption.png) ![step_encryption](../../images/vs2019_step_encryption.png)
![step4](../../images/vs2019_step6.png) ![step4](../../images/vs2019_step6.png)
**设置完成后**, 点击上图中`保存并生成CMake缓存以加载变量`。 **设置完成后**, 点击上图中`保存并生成CMake缓存以加载变量`。
...@@ -123,14 +123,14 @@ cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release ...@@ -123,14 +123,14 @@ cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release
## 样例 ## 样例
可使用[小度熊识别模型](../deploy_python.md)中导出的`inference_model`和测试图片进行预测。 可使用[小度熊识别模型](../deploy_python.md)中导出的`inference_model`和测试图片进行预测, 导出到D:/projects,模型路径为D:/projects/inference_model
`样例一`: `样例一`:
不使用`GPU`测试图片 `\\path\\to\\xiaoduxiong.jpeg` 不使用`GPU`测试图片 `D:\\images\\xiaoduxiong.jpeg`
```shell ```shell
.\\paddlex_inference\\detector.exe --model_dir=\\path\\to\\inference_model --image=D:\\images\\xiaoduxiong.jpeg --save_dir=output .\\paddlex_inference\\detector.exe --model_dir=D:\\projects\\inference_model --image=D:\\images\\xiaoduxiong.jpeg --save_dir=output
``` ```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
...@@ -138,14 +138,14 @@ cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release ...@@ -138,14 +138,14 @@ cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release
`样例二`: `样例二`:
使用`GPU`预测多个图片`\\path\\to\\image_list.txt`,image_list.txt内容的格式如下: 使用`GPU`预测多个图片`D:\\images\\image_list.txt`,image_list.txt内容的格式如下:
``` ```
\\path\\to\\images\\xiaoduxiong1.jpeg D:\\images\\xiaoduxiong1.jpeg
\\path\\to\\images\\xiaoduxiong2.jpeg D:\\images\\xiaoduxiong2.jpeg
... ...
\\path\\to\\images\\xiaoduxiongn.jpeg D:\\images\\xiaoduxiongn.jpeg
``` ```
```shell ```shell
.\\paddlex_inference\\detector.exe --model_dir=\\path\\to\\inference_model --image_list=\\path\\to\\images_list.txt --use_gpu=1 --save_dir=output --batch_size=2 --thread_num=2 .\\paddlex_inference\\detector.exe --model_dir=D:\\projects\\inference_model --image_list=D:\\images\\image_list.txt --use_gpu=1 --save_dir=output --batch_size=2 --thread_num=2
``` ```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
...@@ -70,12 +70,14 @@ paddlex-encryption ...@@ -70,12 +70,14 @@ paddlex-encryption
Linux: Linux:
``` ```
./paddlex-encryption/tool/paddlex_encrypt_tool -model_dir /path/to/paddlex_inference_model -save_dir /path/to/paddlex_encrypted_model # 假设模型在/root/projects下
./paddlex-encryption/tool/paddlex_encrypt_tool -model_dir /root/projects/paddlex_inference_model -save_dir /root/projects/paddlex_encrypted_model
``` ```
Windows: Windows:
``` ```
.\paddlex-encryption\tool\paddlex_encrypt_tool.exe -model_dir \\path\\to\\paddlex_inference_model -save_dir \\path\\to\\paddlex_encrypted_model # 假设模型在D:/projects下
.\paddlex-encryption\tool\paddlex_encrypt_tool.exe -model_dir D:\\projects\\paddlex_inference_model -save_dir D:\\projects\\paddlex_encrypted_model
``` ```
`-model_dir`用于指定inference模型路径(参考[导出inference模型](deploy_python.html#inference)将模型导出为inference格式模型),可使用[导出小度熊识别模型](deploy_python.html#inference)中导出的`inference_model`**注意**:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../upgrade_version.md)对模型版本进行升级。)。加密完成后,加密过的模型会保存至指定的`-save_dir`下,包含`__model__.encrypted``__params__.encrypted``model.yml`三个文件,同时生成密钥信息,命令输出如下图所示,密钥为`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=` `-model_dir`用于指定inference模型路径(参考[导出inference模型](deploy_python.html#inference)将模型导出为inference格式模型),可使用[导出小度熊识别模型](deploy_python.html#inference)中导出的`inference_model`**注意**:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../upgrade_version.md)对模型版本进行升级。)。加密完成后,加密过的模型会保存至指定的`-save_dir`下,包含`__model__.encrypted``__params__.encrypted``model.yml`三个文件,同时生成密钥信息,命令输出如下图所示,密钥为`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`
...@@ -93,7 +95,7 @@ Windows: ...@@ -93,7 +95,7 @@ Windows:
| image | 要预测的图片文件路径 | | image | 要预测的图片文件路径 |
| image_list | 按行存储图片路径的.txt文件 | | image_list | 按行存储图片路径的.txt文件 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) | | use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| use_trt | 是否使用 TensorTr 预测, 支持值为0或1(默认值为0) | | use_trt | 是否使用 TensorRT 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 | | gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output",classifier无该参数 | | save_dir | 保存可视化结果的路径, 默认值为"output",classifier无该参数 |
| key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 | | key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
...@@ -107,25 +109,25 @@ Windows: ...@@ -107,25 +109,25 @@ Windows:
`样例一` `样例一`
不使用`GPU`测试图片 `/path/to/xiaoduxiong.jpeg` 不使用`GPU`测试图片 `/root/projects/images/xiaoduxiong.jpeg`
```shell ```shell
./build/demo/detector --model_dir=/path/to/inference_model --image=/path/to/xiaoduxiong.jpeg --save_dir=output --key=kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c= ./build/demo/detector --model_dir=/root/projects/inference_model --image=/root/projects/xiaoduxiong.jpeg --save_dir=output --key=kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=
``` ```
`--key`传入加密工具输出的密钥,例如`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`, 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 `--key`传入加密工具输出的密钥,例如`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`, 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
`样例二`: `样例二`:
使用`GPU`预测多个图片`/path/to/image_list.txt`,image_list.txt内容的格式如下: 使用`GPU`预测多个图片`/root/projects/image_list.txt`,image_list.txt内容的格式如下:
``` ```
/path/to/images/xiaoduxiong1.jpeg /root/projects/images/xiaoduxiong1.jpeg
/path/to/images/xiaoduxiong2.jpeg /root/projects/xiaoduxiong2.jpeg
... ...
/path/to/images/xiaoduxiongn.jpeg /root/projects/xiaoduxiongn.jpeg
``` ```
```shell ```shell
./build/demo/detector --model_dir=/path/to/models/inference_model --image_list=/root/projects/images_list.txt --use_gpu=1 --save_dir=output --key=kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c= ./build/demo/detector --model_dir=/root/projects/models/inference_model --image_list=/root/projects/images_list.txt --use_gpu=1 --save_dir=output --key=kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=
``` ```
`--key`传入加密工具输出的密钥,例如`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`, 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 `--key`传入加密工具输出的密钥,例如`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`, 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
...@@ -138,24 +140,24 @@ Windows: ...@@ -138,24 +140,24 @@ Windows:
`样例一` `样例一`
不使用`GPU`测试图片 `/path/to/xiaoduxiong.jpeg` 不使用`GPU`测试图片 `D:\\images\\xiaoduxiong.jpeg`
```shell ```shell
.\\paddlex_inference\\detector.exe --model_dir=\\path\\to\\inference_model --image=\\path\\to\\xiaoduxiong.jpeg --save_dir=output --key=kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c= .\\paddlex_inference\\detector.exe --model_dir=D:\\projects\\inference_model --image=D:\\images\\xiaoduxiong.jpeg --save_dir=output --key=kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=
``` ```
`--key`传入加密工具输出的密钥,例如`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`, 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 `--key`传入加密工具输出的密钥,例如`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`, 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
`样例二`: `样例二`:
使用`GPU`预测多个图片`\\path\\to\\image_list.txt`,image_list.txt内容的格式如下: 使用`GPU`预测多个图片`D:\\projects\\image_list.txt`,image_list.txt内容的格式如下:
``` ```
\\path\\to\\images\\xiaoduxiong1.jpeg D:\\projects\\images\\xiaoduxiong1.jpeg
\\path\\to\\images\\xiaoduxiong2.jpeg D:\\projects\\images\\xiaoduxiong2.jpeg
... ...
\\path\\to\\images\\xiaoduxiongn.jpeg D:\\projects\\images\\xiaoduxiongn.jpeg
``` ```
```shell ```shell
.\\paddlex_inference\\detector.exe --model_dir=\\path\\to\\models\\inference_model --image_list=\\path\\to\\images_list.txt --use_gpu=1 --save_dir=output --key=kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c= .\\paddlex_inference\\detector.exe --model_dir=D:\\projects\\inference_encrypted_model --image_list=D:\\projects\\images_list.txt --use_gpu=1 --save_dir=output --key=kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=
``` ```
`--key`传入加密工具输出的密钥,例如`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`, 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。 `--key`传入加密工具输出的密钥,例如`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`, 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册