Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
d83ec51c
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d83ec51c
编写于
7月 10, 2020
作者:
J
Jason
提交者:
GitHub
7月 10, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #207 from PaddlePaddle/doc1
Doc1
上级
8334fae7
6ba16d59
变更
32
隐藏空白更改
内联
并排
Showing
32 changed file
with
706 addition
and
126 deletion
+706
-126
paddlex/command.py
paddlex/command.py
+48
-0
paddlex/cv/datasets/dataset.py
paddlex/cv/datasets/dataset.py
+2
-1
paddlex/cv/datasets/easydata_cls.py
paddlex/cv/datasets/easydata_cls.py
+3
-0
paddlex/cv/datasets/easydata_det.py
paddlex/cv/datasets/easydata_det.py
+3
-0
paddlex/cv/datasets/easydata_seg.py
paddlex/cv/datasets/easydata_seg.py
+3
-0
paddlex/cv/datasets/imagenet.py
paddlex/cv/datasets/imagenet.py
+2
-0
paddlex/cv/datasets/seg_dataset.py
paddlex/cv/datasets/seg_dataset.py
+3
-1
paddlex/cv/datasets/voc.py
paddlex/cv/datasets/voc.py
+3
-0
paddlex/cv/models/utils/visualize.py
paddlex/cv/models/utils/visualize.py
+17
-21
paddlex/cv/transforms/seg_transforms.py
paddlex/cv/transforms/seg_transforms.py
+32
-21
paddlex/tools/base.py
paddlex/tools/base.py
+1
-0
paddlex/tools/convert.py
paddlex/tools/convert.py
+26
-0
paddlex/tools/x2coco.py
paddlex/tools/x2coco.py
+110
-2
paddlex/tools/x2imagenet.py
paddlex/tools/x2imagenet.py
+29
-6
paddlex/utils/__init__.py
paddlex/utils/__init__.py
+1
-0
paddlex/utils/utils.py
paddlex/utils/utils.py
+14
-5
tutorials/train/image_classification/alexnet.py
tutorials/train/image_classification/alexnet.py
+12
-22
tutorials/train/image_classification/mobilenetv2.py
tutorials/train/image_classification/mobilenetv2.py
+2
-7
tutorials/train/image_classification/mobilenetv3_small_ssld.py
...ials/train/image_classification/mobilenetv3_small_ssld.py
+46
-0
tutorials/train/image_classification/resnet50_vd_ssld.py
tutorials/train/image_classification/resnet50_vd_ssld.py
+46
-0
tutorials/train/image_classification/shufflenetv2.py
tutorials/train/image_classification/shufflenetv2.py
+46
-0
tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py
tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py
+54
-0
tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py
tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py
+7
-7
tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py
tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py
+55
-0
tutorials/train/object_detection/faster_rcnn_r50_fpn.py
tutorials/train/object_detection/faster_rcnn_r50_fpn.py
+6
-10
tutorials/train/object_detection/yolov3_darknet53.py
tutorials/train/object_detection/yolov3_darknet53.py
+4
-5
tutorials/train/object_detection/yolov3_mobilenetv1.py
tutorials/train/object_detection/yolov3_mobilenetv1.py
+55
-0
tutorials/train/object_detection/yolov3_mobilenetv3.py
tutorials/train/object_detection/yolov3_mobilenetv3.py
+55
-0
tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2.py
...als/train/semantic_segmentation/deeplabv3p_mobilenetv2.py
+7
-7
tutorials/train/semantic_segmentation/fast_scnn.py
tutorials/train/semantic_segmentation/fast_scnn.py
+9
-3
tutorials/train/semantic_segmentation/hrnet.py
tutorials/train/semantic_segmentation/hrnet.py
+2
-2
tutorials/train/semantic_segmentation/unet.py
tutorials/train/semantic_segmentation/unet.py
+3
-6
未找到文件。
paddlex/command.py
浏览文件 @
d83ec51c
...
...
@@ -50,6 +50,36 @@ def arg_parser():
action
=
"store_true"
,
default
=
False
,
help
=
"export onnx model for deployment"
)
parser
.
add_argument
(
"--data_conversion"
,
"-dc"
,
action
=
"store_true"
,
default
=
False
,
help
=
"convert the dataset to the standard format"
)
parser
.
add_argument
(
"--source"
,
"-se"
,
type
=
_text_type
,
default
=
None
,
help
=
"define dataset format before the conversion"
)
parser
.
add_argument
(
"--to"
,
"-to"
,
type
=
_text_type
,
default
=
None
,
help
=
"define dataset format after the conversion"
)
parser
.
add_argument
(
"--pics"
,
"-p"
,
type
=
_text_type
,
default
=
None
,
help
=
"define pictures directory path"
)
parser
.
add_argument
(
"--annotations"
,
"-a"
,
type
=
_text_type
,
default
=
None
,
help
=
"define annotations directory path"
)
parser
.
add_argument
(
"--fixed_input_shape"
,
"-fs"
,
...
...
@@ -105,6 +135,24 @@ def main():
"paddlex --export_inference --model_dir model_path --save_dir infer_model"
)
pdx
.
convertor
.
export_onnx_model
(
model
,
args
.
save_dir
)
if
args
.
data_conversion
:
assert
args
.
source
is
not
None
,
"--source should be defined while converting dataset"
assert
args
.
to
is
not
None
,
"--to should be defined to confirm the taregt dataset format"
assert
args
.
pics
is
not
None
,
"--pics should be defined to confirm the pictures path"
assert
args
.
annotations
is
not
None
,
"--annotations should be defined to confirm the annotations path"
assert
args
.
save_dir
is
not
None
,
"--save_dir should be defined to store taregt dataset"
if
args
.
source
==
'labelme'
and
args
.
to
==
'ImageNet'
:
logging
.
error
(
"The labelme dataset can not convert to the ImageNet dataset."
,
exit
=
False
)
if
args
.
source
==
'jingling'
and
args
.
to
==
'PascalVOC'
:
logging
.
error
(
"The jingling dataset can not convert to the PascalVOC dataset."
,
exit
=
False
)
pdx
.
tools
.
convert
.
dataset_conversion
(
args
.
source
,
args
.
to
,
args
.
pics
,
args
.
annotations
,
args
.
save_dir
)
if
__name__
==
"__main__"
:
...
...
paddlex/cv/datasets/dataset.py
浏览文件 @
d83ec51c
...
...
@@ -46,7 +46,7 @@ def is_valid(sample):
return
False
elif
isinstance
(
s
,
np
.
ndarray
)
and
s
.
size
==
0
:
return
False
elif
isinstance
(
s
,
collections
.
Sequence
)
and
len
(
s
)
==
0
:
elif
isinstance
(
s
,
collections
.
abc
.
Sequence
)
and
len
(
s
)
==
0
:
return
False
return
True
...
...
@@ -55,6 +55,7 @@ def get_encoding(path):
f
=
open
(
path
,
'rb'
)
data
=
f
.
read
()
file_encoding
=
chardet
.
detect
(
data
).
get
(
'encoding'
)
f
.
close
()
return
file_encoding
...
...
paddlex/cv/datasets/easydata_cls.py
浏览文件 @
d83ec51c
...
...
@@ -18,6 +18,7 @@ import random
import
copy
import
json
import
paddlex.utils.logging
as
logging
from
paddlex.utils
import
path_normalization
from
.imagenet
import
ImageNet
from
.dataset
import
is_pic
from
.dataset
import
get_encoding
...
...
@@ -68,6 +69,8 @@ class EasyDataCls(ImageNet):
for
line
in
f
:
img_file
,
json_file
=
[
osp
.
join
(
data_dir
,
x
)
\
for
x
in
line
.
strip
().
split
()[:
2
]]
img_file
=
path_normalization
(
img_file
)
json_file
=
path_normalization
(
json_file
)
if
not
is_pic
(
img_file
):
continue
if
not
osp
.
isfile
(
json_file
):
...
...
paddlex/cv/datasets/easydata_det.py
浏览文件 @
d83ec51c
...
...
@@ -20,6 +20,7 @@ import json
import
cv2
import
numpy
as
np
import
paddlex.utils.logging
as
logging
from
paddlex.utils
import
path_normalization
from
.voc
import
VOCDetection
from
.dataset
import
is_pic
from
.dataset
import
get_encoding
...
...
@@ -87,6 +88,8 @@ class EasyDataDet(VOCDetection):
for
line
in
f
:
img_file
,
json_file
=
[
osp
.
join
(
data_dir
,
x
)
\
for
x
in
line
.
strip
().
split
()[:
2
]]
img_file
=
path_normalization
(
img_file
)
json_file
=
path_normalization
(
json_file
)
if
not
is_pic
(
img_file
):
continue
if
not
osp
.
isfile
(
json_file
):
...
...
paddlex/cv/datasets/easydata_seg.py
浏览文件 @
d83ec51c
...
...
@@ -20,6 +20,7 @@ import json
import
cv2
import
numpy
as
np
import
paddlex.utils.logging
as
logging
from
paddlex.utils
import
path_normalization
from
.dataset
import
Dataset
from
.dataset
import
get_encoding
from
.dataset
import
is_pic
...
...
@@ -71,6 +72,8 @@ class EasyDataSeg(Dataset):
for
line
in
f
:
img_file
,
json_file
=
[
osp
.
join
(
data_dir
,
x
)
\
for
x
in
line
.
strip
().
split
()[:
2
]]
img_file
=
path_normalization
(
img_file
)
json_file
=
path_normalization
(
json_file
)
if
not
is_pic
(
img_file
):
continue
if
not
osp
.
isfile
(
json_file
):
...
...
paddlex/cv/datasets/imagenet.py
浏览文件 @
d83ec51c
...
...
@@ -17,6 +17,7 @@ import os.path as osp
import
random
import
copy
import
paddlex.utils.logging
as
logging
from
paddlex.utils
import
path_normalization
from
.dataset
import
Dataset
from
.dataset
import
is_pic
from
.dataset
import
get_encoding
...
...
@@ -66,6 +67,7 @@ class ImageNet(Dataset):
with
open
(
file_list
,
encoding
=
get_encoding
(
file_list
))
as
f
:
for
line
in
f
:
items
=
line
.
strip
().
split
()
items
[
0
]
=
path_normalization
(
items
[
0
])
if
not
is_pic
(
items
[
0
]):
continue
full_path
=
osp
.
join
(
data_dir
,
items
[
0
])
...
...
paddlex/cv/datasets/seg_dataset.py
浏览文件 @
d83ec51c
...
...
@@ -17,6 +17,7 @@ import os.path as osp
import
random
import
copy
import
paddlex.utils.logging
as
logging
from
paddlex.utils
import
path_normalization
from
.dataset
import
Dataset
from
.dataset
import
get_encoding
from
.dataset
import
is_pic
...
...
@@ -61,10 +62,11 @@ class SegDataset(Dataset):
for
line
in
f
:
item
=
line
.
strip
()
self
.
labels
.
append
(
item
)
with
open
(
file_list
,
encoding
=
get_encoding
(
file_list
))
as
f
:
for
line
in
f
:
items
=
line
.
strip
().
split
()
items
[
0
]
=
path_normalization
(
items
[
0
])
items
[
1
]
=
path_normalization
(
items
[
1
])
if
not
is_pic
(
items
[
0
]):
continue
full_path_im
=
osp
.
join
(
data_dir
,
items
[
0
])
...
...
paddlex/cv/datasets/voc.py
浏览文件 @
d83ec51c
...
...
@@ -22,6 +22,7 @@ import numpy as np
from
collections
import
OrderedDict
import
xml.etree.ElementTree
as
ET
import
paddlex.utils.logging
as
logging
from
paddlex.utils
import
path_normalization
from
.dataset
import
Dataset
from
.dataset
import
is_pic
from
.dataset
import
get_encoding
...
...
@@ -92,6 +93,8 @@ class VOCDetection(Dataset):
break
img_file
,
xml_file
=
[
osp
.
join
(
data_dir
,
x
)
\
for
x
in
line
.
strip
().
split
()[:
2
]]
img_file
=
path_normalization
(
img_file
)
xml_file
=
path_normalization
(
xml_file
)
if
not
is_pic
(
img_file
):
continue
if
not
osp
.
isfile
(
xml_file
):
...
...
paddlex/cv/models/utils/visualize.py
浏览文件 @
d83ec51c
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
@@ -28,7 +28,7 @@ def visualize_detection(image, result, threshold=0.5, save_dir='./'):
"""
if
isinstance
(
image
,
np
.
ndarray
):
image_name
=
str
(
int
(
time
.
time
()))
+
'.jpg'
image_name
=
str
(
int
(
time
.
time
()
*
1000
))
+
'.jpg'
else
:
image_name
=
os
.
path
.
split
(
image
)[
-
1
]
image
=
cv2
.
imread
(
image
)
...
...
@@ -64,7 +64,7 @@ def visualize_segmentation(image, result, weight=0.6, save_dir='./'):
if
isinstance
(
image
,
np
.
ndarray
):
im
=
image
image_name
=
str
(
int
(
time
.
time
()))
+
'.jpg'
image_name
=
str
(
int
(
time
.
time
()
*
1000
))
+
'.jpg'
else
:
image_name
=
os
.
path
.
split
(
image
)[
-
1
]
im
=
cv2
.
imread
(
image
)
...
...
@@ -145,8 +145,8 @@ def draw_bbox_mask(image, results, threshold=0.5):
assert
brightness_factor
>=
-
1.0
and
brightness_factor
<=
1.0
color
=
mplc
.
to_rgb
(
color
)
polygon_color
=
colorsys
.
rgb_to_hls
(
*
mplc
.
to_rgb
(
color
))
modified_lightness
=
polygon_color
[
1
]
+
(
brightness_factor
*
polygon_color
[
1
])
modified_lightness
=
polygon_color
[
1
]
+
(
brightness_factor
*
polygon_color
[
1
])
modified_lightness
=
0.0
if
modified_lightness
<
0.0
else
modified_lightness
modified_lightness
=
1.0
if
modified_lightness
>
1.0
else
modified_lightness
modified_color
=
colorsys
.
hls_to_rgb
(
...
...
@@ -161,8 +161,7 @@ def draw_bbox_mask(image, results, threshold=0.5):
dpi
=
fig
.
get_dpi
()
fig
.
set_size_inches
(
(
width
*
scale
+
1e-2
)
/
dpi
,
(
height
*
scale
+
1e-2
)
/
dpi
,
)
(
height
*
scale
+
1e-2
)
/
dpi
,
)
canvas
=
FigureCanvasAgg
(
fig
)
ax
=
fig
.
add_axes
([
0.0
,
0.0
,
1.0
,
1.0
])
ax
.
axis
(
"off"
)
...
...
@@ -208,8 +207,7 @@ def draw_bbox_mask(image, results, threshold=0.5):
edgecolor
=
color
,
linewidth
=
linewidth
*
scale
,
alpha
=
0.8
,
linestyle
=
"-"
,
))
linestyle
=
"-"
,
))
# draw mask
if
'mask'
in
dt
:
...
...
@@ -232,23 +230,22 @@ def draw_bbox_mask(image, results, threshold=0.5):
fill
=
True
,
facecolor
=
mplc
.
to_rgb
(
color
)
+
(
alpha
,
),
edgecolor
=
edge_color
,
linewidth
=
max
(
default_font_size
//
15
*
scale
,
1
),
)
linewidth
=
max
(
default_font_size
//
15
*
scale
,
1
),
)
ax
.
add_patch
(
polygon
)
# draw label
text_pos
=
(
xmin
,
ymin
)
horiz_align
=
"left"
instance_area
=
w
*
h
if
(
instance_area
<
_SMALL_OBJECT_AREA_THRESH
*
scale
or
h
<
40
*
scale
):
if
(
instance_area
<
_SMALL_OBJECT_AREA_THRESH
*
scale
or
h
<
40
*
scale
):
if
ymin
>=
height
-
5
:
text_pos
=
(
xmin
,
ymin
)
else
:
text_pos
=
(
xmin
,
ymax
)
height_ratio
=
h
/
np
.
sqrt
(
height
*
width
)
font_size
=
(
np
.
clip
((
height_ratio
-
0.02
)
/
0.08
+
1
,
1.2
,
2
)
*
0.5
*
default_font_size
)
font_size
=
(
np
.
clip
((
height_ratio
-
0.02
)
/
0.08
+
1
,
1.2
,
2
)
*
0.5
*
default_font_size
)
text
=
"{} {:.2f}"
.
format
(
cname
,
score
)
color
=
np
.
maximum
(
list
(
mplc
.
to_rgb
(
color
)),
0.2
)
color
[
np
.
argmax
(
color
)]
=
max
(
0.8
,
np
.
max
(
color
))
...
...
@@ -269,8 +266,7 @@ def draw_bbox_mask(image, results, threshold=0.5):
horizontalalignment
=
horiz_align
,
color
=
color
,
zorder
=
10
,
rotation
=
0
,
)
rotation
=
0
,
)
s
,
(
width
,
height
)
=
canvas
.
print_to_buffer
()
buffer
=
np
.
frombuffer
(
s
,
dtype
=
"uint8"
)
...
...
@@ -408,8 +404,8 @@ def draw_pr_curve(eval_details_file=None,
plt
.
plot
(
x
,
sr_array
,
color
=
color
,
label
=
nm
,
linewidth
=
1
)
plt
.
legend
(
loc
=
"lower left"
,
fontsize
=
5
)
plt
.
savefig
(
os
.
path
.
join
(
save_dir
,
"./{}_pr_curve(iou-{}).png"
.
format
(
style
,
iou_thresh
)),
os
.
path
.
join
(
save_dir
,
"./{}_pr_curve(iou-{}).png"
.
format
(
style
,
iou_thresh
)),
dpi
=
800
)
plt
.
close
()
...
...
paddlex/cv/transforms/seg_transforms.py
浏览文件 @
d83ec51c
...
...
@@ -1102,20 +1102,21 @@ class ArrangeSegmenter(SegTransform):
class
ComposedSegTransforms
(
Compose
):
""" 语义分割模型(UNet/DeepLabv3p)的图像处理流程,具体如下
训练阶段:
1. 随机对图像以0.5的概率水平翻转
2. 按不同的比例随机Resize原图
1. 随机对图像以0.5的概率水平翻转
,若random_horizontal_flip为False,则跳过此步骤
2. 按不同的比例随机Resize原图
, 处理方式参考[paddlex.seg.transforms.ResizeRangeScaling](#resizerangescaling)。若min_max_size为None,则跳过此步骤
3. 从原图中随机crop出大小为train_crop_size大小的子图,如若crop出来的图小于train_crop_size,则会将图padding到对应大小
4. 图像归一化
预测阶段:
1. 图像归一化
预测阶段:
1. 将图像的最长边resize至(min_max_size[0] + min_max_size[1])//2, 短边按比例resize。若min_max_size为None,则跳过此步骤
2. 图像归一化
Args:
mode(str):
图像处理所处阶段,训练/验证/预测,分别对应'train', 'eval',
'test'
min_max_size(list):
训练过程中,图像的最长边会随机resize至此区间(短边按比例相应resize);预测阶段,图像最长边会resize至此区间中间值,即(min_size+max_size)/2。默认为[400, 600]
train_crop_size(list):
仅在mode为'train`时生效,训练过程中,随机从图像中裁剪出对应大小的子图(如若原图小于此大小,则会padding到此大小),默认为[400, 600]
mean(list): 图像均值
std(list): 图像方差
random_horizontal_flip(bool): 数据增强
方式,仅在mode为`train`时生效,表示训练过程是否随机水平翻转图像,默认为True
mode(str):
Transforms所处的阶段,包括`train', 'eval'或
'test'
min_max_size(list):
用于对图像进行resize,具体作用参见上述步骤。
train_crop_size(list):
训练过程中随机裁剪原图用于训练,具体作用参见上述步骤。此参数仅在mode为`train`时生效。
mean(list): 图像均值
, 默认为[0.485, 0.456, 0.406]。
std(list): 图像方差
,默认为[0.229, 0.224, 0.225]。
random_horizontal_flip(bool): 数据增强
,是否随机水平翻转图像,此参数仅在mode为`train`时生效。
"""
def
__init__
(
self
,
...
...
@@ -1127,19 +1128,29 @@ class ComposedSegTransforms(Compose):
random_horizontal_flip
=
True
):
if
mode
==
'train'
:
# 训练时的transforms,包含数据增强
transforms
=
[
ResizeRangeScaling
(
min_value
=
min
(
min_max_size
),
max_value
=
max
(
min_max_size
)),
RandomPaddingCrop
(
crop_size
=
train_crop_size
),
Normalize
(
mean
=
mean
,
std
=
std
)
]
if
min_max_size
is
None
:
transforms
=
[
RandomPaddingCrop
(
crop_size
=
train_crop_size
),
Normalize
(
mean
=
mean
,
std
=
std
)
]
else
:
transforms
=
[
ResizeRangeScaling
(
min_value
=
min
(
min_max_size
),
max_value
=
max
(
min_max_size
)),
RandomPaddingCrop
(
crop_size
=
train_crop_size
),
Normalize
(
mean
=
mean
,
std
=
std
)
]
if
random_horizontal_flip
:
transforms
.
insert
(
0
,
RandomHorizontalFlip
())
else
:
# 验证/预测时的transforms
long_size
=
(
min
(
min_max_size
)
+
max
(
min_max_size
))
//
2
transforms
=
[
ResizeByLong
(
long_size
=
long_size
),
Normalize
(
mean
=
mean
,
std
=
std
)
]
if
min_max_size
is
None
:
transforms
=
[
Normalize
(
mean
=
mean
,
std
=
std
)]
else
:
long_size
=
(
min
(
min_max_size
)
+
max
(
min_max_size
))
//
2
transforms
=
[
ResizeByLong
(
long_size
=
long_size
),
Normalize
(
mean
=
mean
,
std
=
std
)
]
super
(
ComposedSegTransforms
,
self
).
__init__
(
transforms
)
paddlex/tools/base.py
浏览文件 @
d83ec51c
...
...
@@ -40,4 +40,5 @@ def get_encoding(path):
f
=
open
(
path
,
'rb'
)
data
=
f
.
read
()
file_encoding
=
chardet
.
detect
(
data
).
get
(
'encoding'
)
f
.
close
()
return
file_encoding
\ No newline at end of file
paddlex/tools/convert.py
浏览文件 @
d83ec51c
...
...
@@ -15,8 +15,10 @@
# limitations under the License.
from
.x2imagenet
import
EasyData2ImageNet
from
.x2imagenet
import
JingLing2ImageNet
from
.x2coco
import
LabelMe2COCO
from
.x2coco
import
EasyData2COCO
from
.x2coco
import
JingLing2COCO
from
.x2voc
import
LabelMe2VOC
from
.x2voc
import
EasyData2VOC
from
.x2seg
import
JingLing2Seg
...
...
@@ -24,10 +26,34 @@ from .x2seg import LabelMe2Seg
from
.x2seg
import
EasyData2Seg
easydata2imagenet
=
EasyData2ImageNet
().
convert
jingling2imagenet
=
JingLing2ImageNet
().
convert
labelme2coco
=
LabelMe2COCO
().
convert
easydata2coco
=
EasyData2COCO
().
convert
jingling2coco
=
JingLing2COCO
().
convert
labelme2voc
=
LabelMe2VOC
().
convert
easydata2voc
=
EasyData2VOC
().
convert
jingling2seg
=
JingLing2Seg
().
convert
labelme2seg
=
LabelMe2Seg
().
convert
easydata2seg
=
EasyData2Seg
().
convert
def
dataset_conversion
(
source
,
to
,
pics
,
anns
,
save_dir
):
if
source
==
'labelme'
and
to
==
'PascalVOC'
:
labelme2voc
(
pics
,
anns
,
save_dir
)
elif
source
==
'labelme'
and
to
==
'MSCOCO'
:
labelme2coco
(
pics
,
anns
,
save_dir
)
elif
source
==
'labelme'
and
to
==
'SEG'
:
labelme2seg
(
pics
,
anns
,
save_dir
)
elif
source
==
'jingling'
and
to
==
'ImageNet'
:
jingling2imagenet
(
pics
,
anns
,
save_dir
)
elif
source
==
'jingling'
and
to
==
'MSCOCO'
:
jingling2coco
(
pics
,
anns
,
save_dir
)
elif
source
==
'jingling'
and
to
==
'SEG'
:
jingling2seg
(
pics
,
anns
,
save_dir
)
elif
source
==
'easydata'
and
to
==
'ImageNet'
:
easydata2imagenet
(
pics
,
anns
,
save_dir
)
elif
source
==
'easydata'
and
to
==
'PascalVOC'
:
easydata2voc
(
pics
,
anns
,
save_dir
)
elif
source
==
'easydata'
and
to
==
'MSCOCO'
:
easydata2coco
(
pics
,
anns
,
save_dir
)
elif
source
==
'easydata'
and
to
==
'SEG'
:
easydata2seg
(
pics
,
anns
,
save_dir
)
\ No newline at end of file
paddlex/tools/x2coco.py
浏览文件 @
d83ec51c
...
...
@@ -22,6 +22,7 @@ import shutil
import
numpy
as
np
import
PIL.ImageDraw
from
.base
import
MyEncoder
,
is_pic
,
get_encoding
from
paddlex.utils
import
path_normalization
class
X2COCO
(
object
):
...
...
@@ -100,6 +101,7 @@ class LabelMe2COCO(X2COCO):
image
[
"height"
]
=
json_info
[
"imageHeight"
]
image
[
"width"
]
=
json_info
[
"imageWidth"
]
image
[
"id"
]
=
image_id
+
1
json_info
[
"imagePath"
]
=
path_normalization
(
json_info
[
"imagePath"
])
image
[
"file_name"
]
=
osp
.
split
(
json_info
[
"imagePath"
])[
-
1
]
return
image
...
...
@@ -144,7 +146,7 @@ class LabelMe2COCO(X2COCO):
img_name_part
=
osp
.
splitext
(
img_file
)[
0
]
json_file
=
osp
.
join
(
json_dir
,
img_name_part
+
".json"
)
if
not
osp
.
exists
(
json_file
):
os
.
remove
(
os
.
remove
(
osp
.
join
(
image_dir
,
img_file
)
))
os
.
remove
(
os
p
.
join
(
image_dir
,
img_file
))
continue
image_id
=
image_id
+
1
with
open
(
json_file
,
mode
=
'r'
,
\
...
...
@@ -187,6 +189,7 @@ class EasyData2COCO(X2COCO):
image
[
"height"
]
=
img
.
shape
[
0
]
image
[
"width"
]
=
img
.
shape
[
1
]
image
[
"id"
]
=
image_id
+
1
img_path
=
path_normalization
(
img_path
)
image
[
"file_name"
]
=
osp
.
split
(
img_path
)[
-
1
]
return
image
...
...
@@ -216,7 +219,7 @@ class EasyData2COCO(X2COCO):
img_name_part
=
osp
.
splitext
(
img_file
)[
0
]
json_file
=
osp
.
join
(
json_dir
,
img_name_part
+
".json"
)
if
not
osp
.
exists
(
json_file
):
os
.
remove
(
os
.
remove
(
osp
.
join
(
image_dir
,
img_file
)
))
os
.
remove
(
os
p
.
join
(
image_dir
,
img_file
))
continue
image_id
=
image_id
+
1
with
open
(
json_file
,
mode
=
'r'
,
\
...
...
@@ -255,3 +258,108 @@ class EasyData2COCO(X2COCO):
self
.
annotations_list
.
append
(
self
.
generate_polygon_anns_field
(
points
,
segmentation
,
label
,
image_id
,
object_id
,
label_to_num
))
class
JingLing2COCO
(
X2COCO
):
"""将使用EasyData标注的检测或分割数据集转换为COCO数据集。
"""
def
__init__
(
self
):
super
(
JingLing2COCO
,
self
).
__init__
()
def
generate_images_field
(
self
,
json_info
,
image_id
):
image
=
{}
image
[
"height"
]
=
json_info
[
"size"
][
"height"
]
image
[
"width"
]
=
json_info
[
"size"
][
"width"
]
image
[
"id"
]
=
image_id
+
1
json_info
[
"path"
]
=
path_normalization
(
json_info
[
"path"
])
image
[
"file_name"
]
=
osp
.
split
(
json_info
[
"path"
])[
-
1
]
return
image
def
generate_polygon_anns_field
(
self
,
height
,
width
,
points
,
label
,
image_id
,
object_id
,
label_to_num
):
annotation
=
{}
annotation
[
"segmentation"
]
=
[
list
(
np
.
asarray
(
points
).
flatten
())]
annotation
[
"iscrowd"
]
=
0
annotation
[
"image_id"
]
=
image_id
+
1
annotation
[
"bbox"
]
=
list
(
map
(
float
,
self
.
get_bbox
(
height
,
width
,
points
)))
annotation
[
"area"
]
=
annotation
[
"bbox"
][
2
]
*
annotation
[
"bbox"
][
3
]
annotation
[
"category_id"
]
=
label_to_num
[
label
]
annotation
[
"id"
]
=
object_id
+
1
return
annotation
def
get_bbox
(
self
,
height
,
width
,
points
):
polygons
=
points
mask
=
np
.
zeros
([
height
,
width
],
dtype
=
np
.
uint8
)
mask
=
PIL
.
Image
.
fromarray
(
mask
)
xy
=
list
(
map
(
tuple
,
polygons
))
PIL
.
ImageDraw
.
Draw
(
mask
).
polygon
(
xy
=
xy
,
outline
=
1
,
fill
=
1
)
mask
=
np
.
array
(
mask
,
dtype
=
bool
)
index
=
np
.
argwhere
(
mask
==
1
)
rows
=
index
[:,
0
]
clos
=
index
[:,
1
]
left_top_r
=
np
.
min
(
rows
)
left_top_c
=
np
.
min
(
clos
)
right_bottom_r
=
np
.
max
(
rows
)
right_bottom_c
=
np
.
max
(
clos
)
return
[
left_top_c
,
left_top_r
,
right_bottom_c
-
left_top_c
,
right_bottom_r
-
left_top_r
]
def
parse_json
(
self
,
img_dir
,
json_dir
):
image_id
=
-
1
object_id
=
-
1
labels_list
=
[]
label_to_num
=
{}
for
img_file
in
os
.
listdir
(
img_dir
):
img_name_part
=
osp
.
splitext
(
img_file
)[
0
]
json_file
=
osp
.
join
(
json_dir
,
img_name_part
+
".json"
)
if
not
osp
.
exists
(
json_file
):
os
.
remove
(
osp
.
join
(
image_dir
,
img_file
))
continue
image_id
=
image_id
+
1
with
open
(
json_file
,
mode
=
'r'
,
\
encoding
=
get_encoding
(
json_file
))
as
j
:
json_info
=
json
.
load
(
j
)
img_info
=
self
.
generate_images_field
(
json_info
,
image_id
)
self
.
images_list
.
append
(
img_info
)
anns_type
=
"bndbox"
for
i
,
obj
in
enumerate
(
json_info
[
"outputs"
][
"object"
]):
if
i
==
0
:
if
"polygon"
in
obj
:
anns_type
=
"polygon"
else
:
if
anns_type
not
in
obj
:
continue
object_id
=
object_id
+
1
label
=
obj
[
"name"
]
if
label
not
in
labels_list
:
self
.
categories_list
.
append
(
\
self
.
generate_categories_field
(
label
,
labels_list
))
labels_list
.
append
(
label
)
label_to_num
[
label
]
=
len
(
labels_list
)
if
anns_type
==
"polygon"
:
points
=
[]
for
j
in
range
(
int
(
len
(
obj
[
"polygon"
])
/
2.0
)):
points
.
append
([
obj
[
"polygon"
][
"x"
+
str
(
j
+
1
)],
obj
[
"polygon"
][
"y"
+
str
(
j
+
1
)]])
self
.
annotations_list
.
append
(
self
.
generate_polygon_anns_field
(
json_info
[
"size"
][
"height"
],
json_info
[
"size"
][
"width"
],
points
,
label
,
image_id
,
object_id
,
label_to_num
))
if
anns_type
==
"bndbox"
:
points
=
[]
points
.
append
([
obj
[
"bndbox"
][
"xmin"
],
obj
[
"bndbox"
][
"ymin"
]])
points
.
append
([
obj
[
"bndbox"
][
"xmax"
],
obj
[
"bndbox"
][
"ymax"
]])
points
.
append
([
obj
[
"bndbox"
][
"xmin"
],
obj
[
"bndbox"
][
"ymax"
]])
points
.
append
([
obj
[
"bndbox"
][
"xmax"
],
obj
[
"bndbox"
][
"ymin"
]])
self
.
annotations_list
.
append
(
self
.
generate_rectangle_anns_field
(
points
,
label
,
image_id
,
object_id
,
label_to_num
))
\ No newline at end of file
paddlex/tools/x2imagenet.py
浏览文件 @
d83ec51c
...
...
@@ -22,9 +22,8 @@ import shutil
import
numpy
as
np
from
.base
import
MyEncoder
,
is_pic
,
get_encoding
class
EasyData2ImageNet
(
object
):
"""将使用EasyData标注的分类数据集转换为COCO数据集。
"""
class
X2ImageNet
(
object
):
def
__init__
(
self
):
pass
...
...
@@ -46,8 +45,8 @@ class EasyData2ImageNet(object):
continue
with
open
(
json_file
,
mode
=
"r"
,
\
encoding
=
get_encoding
(
json_file
))
as
j
:
json_info
=
json
.
load
(
j
)
for
output
in
json_info
[
'labels'
]
:
json_info
=
self
.
get_json_info
(
j
)
for
output
in
json_info
:
cls_name
=
output
[
'name'
]
new_image_dir
=
osp
.
join
(
dataset_save_dir
,
cls_name
)
if
not
osp
.
exists
(
new_image_dir
):
...
...
@@ -55,4 +54,28 @@ class EasyData2ImageNet(object):
if
is_pic
(
img_name
):
shutil
.
copyfile
(
osp
.
join
(
image_dir
,
img_name
),
osp
.
join
(
new_image_dir
,
img_name
))
\ No newline at end of file
osp
.
join
(
new_image_dir
,
img_name
))
class
EasyData2ImageNet
(
X2ImageNet
):
"""将使用EasyData标注的分类数据集转换为ImageNet数据集。
"""
def
__init__
(
self
):
super
(
EasyData2ImageNet
,
self
).
__init__
()
def
get_json_info
(
self
,
json_file
):
json_info
=
json
.
load
(
json_file
)
json_info
=
json_info
[
'labels'
]
return
json_info
class
JingLing2ImageNet
(
X2ImageNet
):
"""将使用标注精灵标注的分类数据集转换为ImageNet数据集。
"""
def
__init__
(
self
):
super
(
X2ImageNet
,
self
).
__init__
()
def
get_json_info
(
self
,
json_file
):
json_info
=
json
.
load
(
json_file
)
json_info
=
json_info
[
'outputs'
][
'object'
]
return
json_info
\ No newline at end of file
paddlex/utils/__init__.py
浏览文件 @
d83ec51c
...
...
@@ -17,6 +17,7 @@ from . import logging
from
.
import
utils
from
.
import
save
from
.utils
import
seconds_to_hms
from
.utils
import
path_normalization
from
.download
import
download
from
.download
import
decompress
from
.download
import
download_and_decompress
paddlex/utils/utils.py
浏览文件 @
d83ec51c
...
...
@@ -20,6 +20,7 @@ import numpy as np
import
six
import
yaml
import
math
import
platform
from
.
import
logging
...
...
@@ -49,18 +50,26 @@ def get_environ_info():
info
[
'num'
]
=
fluid
.
core
.
get_cuda_device_count
()
return
info
def
path_normalization
(
path
):
win_sep
=
"
\\
"
other_sep
=
"/"
if
platform
.
system
()
==
"Windows"
:
path
=
win_sep
.
join
(
path
.
split
(
other_sep
))
else
:
path
=
other_sep
.
join
(
path
.
split
(
win_sep
))
return
path
def
parse_param_file
(
param_file
,
return_shape
=
True
):
from
paddle.fluid.proto.framework_pb2
import
VarType
f
=
open
(
param_file
,
'rb'
)
version
=
np
.
from
string
(
f
.
read
(
4
),
dtype
=
'int32'
)
lod_level
=
np
.
from
string
(
f
.
read
(
8
),
dtype
=
'int64'
)
version
=
np
.
from
buffer
(
f
.
read
(
4
),
dtype
=
'int32'
)
lod_level
=
np
.
from
buffer
(
f
.
read
(
8
),
dtype
=
'int64'
)
for
i
in
range
(
int
(
lod_level
)):
_size
=
np
.
from
string
(
f
.
read
(
8
),
dtype
=
'int64'
)
_size
=
np
.
from
buffer
(
f
.
read
(
8
),
dtype
=
'int64'
)
_
=
f
.
read
(
_size
)
version
=
np
.
from
string
(
f
.
read
(
4
),
dtype
=
'int32'
)
version
=
np
.
from
buffer
(
f
.
read
(
4
),
dtype
=
'int32'
)
tensor_desc
=
VarType
.
TensorDesc
()
tensor_desc_size
=
np
.
from
string
(
f
.
read
(
4
),
dtype
=
'int32'
)
tensor_desc_size
=
np
.
from
buffer
(
f
.
read
(
4
),
dtype
=
'int32'
)
tensor_desc
.
ParseFromString
(
f
.
read
(
int
(
tensor_desc_size
)))
tensor_shape
=
tuple
(
tensor_desc
.
dims
)
if
return_shape
:
...
...
tutorials/train/
classification/resnet50
.py
→
tutorials/train/
image_classification/alexnet
.py
浏览文件 @
d83ec51c
import
os
# 选择使用0号卡
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
import
paddle.fluid
as
fluid
from
paddlex.cls
import
transforms
import
paddlex
as
pdx
...
...
@@ -11,13 +7,13 @@ veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
pdx
.
utils
.
download_and_decompress
(
veg_dataset
,
path
=
'./'
)
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
(
[
transforms
.
RandomCrop
(
crop_size
=
224
),
transforms
.
Normalize
()])
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomCrop
(
crop_size
=
224
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
()
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
ResizeByShort
(
short_size
=
256
),
transforms
.
CenterCrop
(
crop_size
=
224
),
transforms
.
Normalize
()
transforms
.
CenterCrop
(
crop_size
=
224
),
transforms
.
Normalize
()
])
# 定义训练和验证所用的数据集
...
...
@@ -33,26 +29,20 @@ eval_dataset = pdx.datasets.ImageNet(
label_list
=
'vegetables_cls/labels.txt'
,
transforms
=
eval_transforms
)
# PaddleX支持自定义构建优化器
step_each_epoch
=
train_dataset
.
num_samples
//
32
learning_rate
=
fluid
.
layers
.
cosine_decay
(
learning_rate
=
0.025
,
step_each_epoch
=
step_each_epoch
,
epochs
=
10
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
4e-5
))
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/
resnet50
/vdl_log --port 8001
# VisualDL启动方式: visualdl --logdir output/
mobilenetv2
/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
model
=
pdx
.
cls
.
ResNet50
(
num_classes
=
len
(
train_dataset
.
labels
))
model
=
pdx
.
cls
.
AlexNet
(
num_classes
=
len
(
train_dataset
.
labels
))
# AlexNet需要指定确定的input_shape
model
.
fixed_input_shape
=
[
224
,
224
]
model
.
train
(
num_epochs
=
10
,
train_dataset
=
train_dataset
,
train_batch_size
=
32
,
eval_dataset
=
eval_dataset
,
optimizer
=
optimizer
,
save_dir
=
'output/resnet50'
,
lr_decay_epochs
=
[
4
,
6
,
8
],
learning_rate
=
0.0025
,
save_dir
=
'output/alexnet'
,
use_vdl
=
True
)
tutorials/train/classification/mobilenetv2.py
→
tutorials/train/
image_
classification/mobilenetv2.py
浏览文件 @
d83ec51c
import
os
# 选择使用0号卡
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
from
paddlex.cls
import
transforms
import
paddlex
as
pdx
...
...
@@ -11,14 +8,12 @@ pdx.utils.download_and_decompress(veg_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomCrop
(
crop_size
=
224
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
RandomCrop
(
crop_size
=
224
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
()
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
ResizeByShort
(
short_size
=
256
),
transforms
.
CenterCrop
(
crop_size
=
224
),
transforms
.
Normalize
()
transforms
.
CenterCrop
(
crop_size
=
224
),
transforms
.
Normalize
()
])
# 定义训练和验证所用的数据集
...
...
tutorials/train/image_classification/mobilenetv3_small_ssld.py
0 → 100644
浏览文件 @
d83ec51c
import
os
from
paddlex.cls
import
transforms
import
paddlex
as
pdx
# 下载和解压蔬菜分类数据集
veg_dataset
=
'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
pdx
.
utils
.
download_and_decompress
(
veg_dataset
,
path
=
'./'
)
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomCrop
(
crop_size
=
224
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
()
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
ResizeByShort
(
short_size
=
256
),
transforms
.
CenterCrop
(
crop_size
=
224
),
transforms
.
Normalize
()
])
# 定义训练和验证所用的数据集
train_dataset
=
pdx
.
datasets
.
ImageNet
(
data_dir
=
'vegetables_cls'
,
file_list
=
'vegetables_cls/train_list.txt'
,
label_list
=
'vegetables_cls/labels.txt'
,
transforms
=
train_transforms
,
shuffle
=
True
)
eval_dataset
=
pdx
.
datasets
.
ImageNet
(
data_dir
=
'vegetables_cls'
,
file_list
=
'vegetables_cls/val_list.txt'
,
label_list
=
'vegetables_cls/labels.txt'
,
transforms
=
eval_transforms
)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/mobilenetv2/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
model
=
pdx
.
cls
.
MobileNetV3_small_ssld
(
num_classes
=
len
(
train_dataset
.
labels
))
model
.
train
(
num_epochs
=
10
,
train_dataset
=
train_dataset
,
train_batch_size
=
32
,
eval_dataset
=
eval_dataset
,
lr_decay_epochs
=
[
4
,
6
,
8
],
learning_rate
=
0.025
,
save_dir
=
'output/mobilenetv3_small_ssld'
,
use_vdl
=
True
)
tutorials/train/image_classification/resnet50_vd_ssld.py
0 → 100644
浏览文件 @
d83ec51c
import
os
from
paddlex.cls
import
transforms
import
paddlex
as
pdx
# 下载和解压蔬菜分类数据集
veg_dataset
=
'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
pdx
.
utils
.
download_and_decompress
(
veg_dataset
,
path
=
'./'
)
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomCrop
(
crop_size
=
224
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
()
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
ResizeByShort
(
short_size
=
256
),
transforms
.
CenterCrop
(
crop_size
=
224
),
transforms
.
Normalize
()
])
# 定义训练和验证所用的数据集
train_dataset
=
pdx
.
datasets
.
ImageNet
(
data_dir
=
'vegetables_cls'
,
file_list
=
'vegetables_cls/train_list.txt'
,
label_list
=
'vegetables_cls/labels.txt'
,
transforms
=
train_transforms
,
shuffle
=
True
)
eval_dataset
=
pdx
.
datasets
.
ImageNet
(
data_dir
=
'vegetables_cls'
,
file_list
=
'vegetables_cls/val_list.txt'
,
label_list
=
'vegetables_cls/labels.txt'
,
transforms
=
eval_transforms
)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/mobilenetv2/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
model
=
pdx
.
cls
.
ResNet50_vd_ssld
(
num_classes
=
len
(
train_dataset
.
labels
))
model
.
train
(
num_epochs
=
10
,
train_dataset
=
train_dataset
,
train_batch_size
=
32
,
eval_dataset
=
eval_dataset
,
lr_decay_epochs
=
[
4
,
6
,
8
],
learning_rate
=
0.025
,
save_dir
=
'output/resnet50_vd_ssld'
,
use_vdl
=
True
)
tutorials/train/image_classification/shufflenetv2.py
0 → 100644
浏览文件 @
d83ec51c
import
os
from
paddlex.cls
import
transforms
import
paddlex
as
pdx
# 下载和解压蔬菜分类数据集
veg_dataset
=
'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
pdx
.
utils
.
download_and_decompress
(
veg_dataset
,
path
=
'./'
)
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomCrop
(
crop_size
=
224
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
()
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
ResizeByShort
(
short_size
=
256
),
transforms
.
CenterCrop
(
crop_size
=
224
),
transforms
.
Normalize
()
])
# 定义训练和验证所用的数据集
train_dataset
=
pdx
.
datasets
.
ImageNet
(
data_dir
=
'vegetables_cls'
,
file_list
=
'vegetables_cls/train_list.txt'
,
label_list
=
'vegetables_cls/labels.txt'
,
transforms
=
train_transforms
,
shuffle
=
True
)
eval_dataset
=
pdx
.
datasets
.
ImageNet
(
data_dir
=
'vegetables_cls'
,
file_list
=
'vegetables_cls/val_list.txt'
,
label_list
=
'vegetables_cls/labels.txt'
,
transforms
=
eval_transforms
)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/mobilenetv2/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
model
=
pdx
.
cls
.
ShuffleNetV2
(
num_classes
=
len
(
train_dataset
.
labels
))
model
.
train
(
num_epochs
=
10
,
train_dataset
=
train_dataset
,
train_batch_size
=
32
,
eval_dataset
=
eval_dataset
,
lr_decay_epochs
=
[
4
,
6
,
8
],
learning_rate
=
0.025
,
save_dir
=
'output/shufflenetv2'
,
use_vdl
=
True
)
tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py
0 → 100644
浏览文件 @
d83ec51c
import
os
# 选择使用0号卡
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
from
paddlex.det
import
transforms
import
paddlex
as
pdx
# 下载和解压小度熊分拣数据集
xiaoduxiong_dataset
=
'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz'
pdx
.
utils
.
download_and_decompress
(
xiaoduxiong_dataset
,
path
=
'./'
)
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
(),
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
Padding
(
coarsest_stride
=
32
)
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
Normalize
(),
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
Padding
(
coarsest_stride
=
32
),
])
# 定义训练和验证所用的数据集
train_dataset
=
pdx
.
datasets
.
CocoDetection
(
data_dir
=
'xiaoduxiong_ins_det/JPEGImages'
,
ann_file
=
'xiaoduxiong_ins_det/train.json'
,
transforms
=
train_transforms
,
shuffle
=
True
)
eval_dataset
=
pdx
.
datasets
.
CocoDetection
(
data_dir
=
'xiaoduxiong_ins_det/JPEGImages'
,
ann_file
=
'xiaoduxiong_ins_det/val.json'
,
transforms
=
eval_transforms
)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/mask_rcnn_r50_fpn/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
# num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
num_classes
=
len
(
train_dataset
.
labels
)
+
1
model
=
pdx
.
det
.
MaskRCNN
(
num_classes
=
num_classes
,
backbone
=
'HRNet_W18'
)
model
.
train
(
num_epochs
=
12
,
train_dataset
=
train_dataset
,
train_batch_size
=
1
,
eval_dataset
=
eval_dataset
,
learning_rate
=
0.00125
,
warmup_steps
=
10
,
lr_decay_epochs
=
[
8
,
11
],
save_dir
=
'output/mask_rcnn_hrnet_fpn'
,
use_vdl
=
True
)
tutorials/train/
detec
tion/mask_rcnn_r50_fpn.py
→
tutorials/train/
instance_segmenta
tion/mask_rcnn_r50_fpn.py
浏览文件 @
d83ec51c
...
...
@@ -11,16 +11,16 @@ pdx.utils.download_and_decompress(xiaoduxiong_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
(),
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
Padding
(
coarsest_stride
=
32
)
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
(),
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
Padding
(
coarsest_stride
=
32
)
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
Normalize
(),
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
Padding
(
coarsest_stride
=
32
)
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
Padding
(
coarsest_stride
=
32
),
])
# 定义训练和验证所用的数据集
...
...
@@ -41,7 +41,7 @@ eval_dataset = pdx.datasets.CocoDetection(
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
# num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
num_classes
=
len
(
train_dataset
.
labels
)
+
1
model
=
pdx
.
det
.
MaskRCNN
(
num_classes
=
num_classes
)
model
=
pdx
.
det
.
MaskRCNN
(
num_classes
=
num_classes
,
backbone
=
'ResNet50_vd'
)
model
.
train
(
num_epochs
=
12
,
train_dataset
=
train_dataset
,
...
...
tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py
0 → 100644
浏览文件 @
d83ec51c
import
os
# 选择使用0号卡
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
from
paddlex.det
import
transforms
import
paddlex
as
pdx
# 下载和解压昆虫检测数据集
insect_dataset
=
'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
pdx
.
utils
.
download_and_decompress
(
insect_dataset
,
path
=
'./'
)
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
(),
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
Padding
(
coarsest_stride
=
32
)
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
Normalize
(),
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
Padding
(
coarsest_stride
=
32
),
])
# 定义训练和验证所用的数据集
train_dataset
=
pdx
.
datasets
.
VOCDetection
(
data_dir
=
'insect_det'
,
file_list
=
'insect_det/train_list.txt'
,
label_list
=
'insect_det/labels.txt'
,
transforms
=
train_transforms
,
shuffle
=
True
)
eval_dataset
=
pdx
.
datasets
.
VOCDetection
(
data_dir
=
'insect_det'
,
file_list
=
'insect_det/val_list.txt'
,
label_list
=
'insect_det/labels.txt'
,
transforms
=
eval_transforms
)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/faster_rcnn_r50_fpn/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
# num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
num_classes
=
len
(
train_dataset
.
labels
)
+
1
model
=
pdx
.
det
.
FasterRCNN
(
num_classes
=
num_classes
,
backbone
=
'HRNet_W18'
)
model
.
train
(
num_epochs
=
12
,
train_dataset
=
train_dataset
,
train_batch_size
=
2
,
eval_dataset
=
eval_dataset
,
learning_rate
=
0.0025
,
lr_decay_epochs
=
[
8
,
11
],
save_dir
=
'output/faster_rcnn_hrnet_fpn'
,
use_vdl
=
True
)
tutorials/train/detection/faster_rcnn_r50_fpn.py
→
tutorials/train/
object_
detection/faster_rcnn_r50_fpn.py
浏览文件 @
d83ec51c
import
os
# 选择使用0号卡
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
from
paddlex.det
import
transforms
import
paddlex
as
pdx
...
...
@@ -11,18 +8,17 @@ pdx.utils.download_and_decompress(insect_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
(),
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
Padding
(
coarsest_stride
=
32
)
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
(),
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
Padding
(
coarsest_stride
=
32
)
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
Normalize
(),
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
ResizeByShort
(
short_size
=
800
,
max_size
=
1333
),
transforms
.
Padding
(
coarsest_stride
=
32
),
])
# 定义训练和验证所用的数据集
train_dataset
=
pdx
.
datasets
.
VOCDetection
(
data_dir
=
'insect_det'
,
...
...
@@ -43,7 +39,7 @@ eval_dataset = pdx.datasets.VOCDetection(
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
# num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
num_classes
=
len
(
train_dataset
.
labels
)
+
1
model
=
pdx
.
det
.
FasterRCNN
(
num_classes
=
num_classes
)
model
=
pdx
.
det
.
FasterRCNN
(
num_classes
=
num_classes
,
backbone
=
'ResNet50_vd'
)
model
.
train
(
num_epochs
=
12
,
train_dataset
=
train_dataset
,
...
...
tutorials/train/detection/yolov3_darknet53.py
→
tutorials/train/
object_
detection/yolov3_darknet53.py
浏览文件 @
d83ec51c
import
os
# 选择使用0号卡
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
from
paddlex.det
import
transforms
import
paddlex
as
pdx
...
...
@@ -15,13 +12,15 @@ train_transforms = transforms.Compose([
transforms
.
RandomDistort
(),
transforms
.
RandomExpand
(),
transforms
.
RandomCrop
(),
transforms
.
Resize
(
target_size
=
608
,
interp
=
'RANDOM'
),
transforms
.
Resize
(
target_size
=
608
,
interp
=
'RANDOM'
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
(),
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
Resize
(
target_size
=
608
,
interp
=
'CUBIC'
),
transforms
.
Resize
(
target_size
=
608
,
interp
=
'CUBIC'
),
transforms
.
Normalize
(),
])
...
...
tutorials/train/object_detection/yolov3_mobilenetv1.py
0 → 100644
浏览文件 @
d83ec51c
import
os
from
paddlex.det
import
transforms
import
paddlex
as
pdx
# 下载和解压昆虫检测数据集
insect_dataset
=
'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
pdx
.
utils
.
download_and_decompress
(
insect_dataset
,
path
=
'./'
)
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
MixupImage
(
mixup_epoch
=
250
),
transforms
.
RandomDistort
(),
transforms
.
RandomExpand
(),
transforms
.
RandomCrop
(),
transforms
.
Resize
(
target_size
=
608
,
interp
=
'RANDOM'
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
(),
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
Resize
(
target_size
=
608
,
interp
=
'CUBIC'
),
transforms
.
Normalize
(),
])
# 定义训练和验证所用的数据集
train_dataset
=
pdx
.
datasets
.
VOCDetection
(
data_dir
=
'insect_det'
,
file_list
=
'insect_det/train_list.txt'
,
label_list
=
'insect_det/labels.txt'
,
transforms
=
train_transforms
,
shuffle
=
True
)
eval_dataset
=
pdx
.
datasets
.
VOCDetection
(
data_dir
=
'insect_det'
,
file_list
=
'insect_det/val_list.txt'
,
label_list
=
'insect_det/labels.txt'
,
transforms
=
eval_transforms
)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
num_classes
=
len
(
train_dataset
.
labels
)
model
=
pdx
.
det
.
YOLOv3
(
num_classes
=
num_classes
,
backbone
=
'MobileNetV1'
)
model
.
train
(
num_epochs
=
270
,
train_dataset
=
train_dataset
,
train_batch_size
=
8
,
eval_dataset
=
eval_dataset
,
learning_rate
=
0.000125
,
lr_decay_epochs
=
[
210
,
240
],
save_dir
=
'output/yolov3_mobilenetv1'
,
use_vdl
=
True
)
tutorials/train/object_detection/yolov3_mobilenetv3.py
0 → 100644
浏览文件 @
d83ec51c
import
os
from
paddlex.det
import
transforms
import
paddlex
as
pdx
# 下载和解压昆虫检测数据集
insect_dataset
=
'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
pdx
.
utils
.
download_and_decompress
(
insect_dataset
,
path
=
'./'
)
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
MixupImage
(
mixup_epoch
=
250
),
transforms
.
RandomDistort
(),
transforms
.
RandomExpand
(),
transforms
.
RandomCrop
(),
transforms
.
Resize
(
target_size
=
608
,
interp
=
'RANDOM'
),
transforms
.
RandomHorizontalFlip
(),
transforms
.
Normalize
(),
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
Resize
(
target_size
=
608
,
interp
=
'CUBIC'
),
transforms
.
Normalize
(),
])
# 定义训练和验证所用的数据集
train_dataset
=
pdx
.
datasets
.
VOCDetection
(
data_dir
=
'insect_det'
,
file_list
=
'insect_det/train_list.txt'
,
label_list
=
'insect_det/labels.txt'
,
transforms
=
train_transforms
,
shuffle
=
True
)
eval_dataset
=
pdx
.
datasets
.
VOCDetection
(
data_dir
=
'insect_det'
,
file_list
=
'insect_det/val_list.txt'
,
label_list
=
'insect_det/labels.txt'
,
transforms
=
eval_transforms
)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
num_classes
=
len
(
train_dataset
.
labels
)
model
=
pdx
.
det
.
YOLOv3
(
num_classes
=
num_classes
,
backbone
=
'MobileNetV3_large'
)
model
.
train
(
num_epochs
=
270
,
train_dataset
=
train_dataset
,
train_batch_size
=
8
,
eval_dataset
=
eval_dataset
,
learning_rate
=
0.000125
,
lr_decay_epochs
=
[
210
,
240
],
save_dir
=
'output/yolov3_mobilenetv3'
,
use_vdl
=
True
)
tutorials/train/se
gmentation/deeplabv3p
.py
→
tutorials/train/se
mantic_segmentation/deeplabv3p_mobilenetv2
.py
浏览文件 @
d83ec51c
...
...
@@ -11,14 +11,14 @@ pdx.utils.download_and_decompress(optic_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomHorizontalFlip
(),
transforms
.
Resize
(
target_size
=
512
),
transforms
.
RandomPaddingCrop
(
crop_size
=
500
),
transforms
.
Normalize
()
transforms
.
RandomHorizontalFlip
(),
transforms
.
ResizeRangeScaling
(),
transforms
.
RandomPaddingCrop
(
crop_size
=
512
),
transforms
.
Normalize
()
])
eval_transforms
=
transforms
.
Compose
(
[
transforms
.
Resize
(
512
),
transforms
.
Normalize
()])
eval_transforms
=
transforms
.
Compose
([
transforms
.
ResizeByLong
(
long_size
=
512
),
transforms
.
Padding
(
target_size
=
512
),
transforms
.
Normalize
()
])
# 定义训练和验证所用的数据集
train_dataset
=
pdx
.
datasets
.
SegDataset
(
...
...
@@ -46,5 +46,5 @@ model.train(
train_batch_size
=
4
,
eval_dataset
=
eval_dataset
,
learning_rate
=
0.01
,
save_dir
=
'output/deeplab'
,
save_dir
=
'output/deeplab
v3p_mobilenetv2
'
,
use_vdl
=
True
)
tutorials/train/segmentation/fast_scnn.py
→
tutorials/train/se
mantic_se
gmentation/fast_scnn.py
浏览文件 @
d83ec51c
...
...
@@ -11,9 +11,15 @@ pdx.utils.download_and_decompress(optic_dataset, path='./')
# 定义训练和验证时的transforms
# API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/seg_transforms.html#composedsegtransforms
train_transforms
=
transforms
.
ComposedSegTransforms
(
mode
=
'train'
,
train_crop_size
=
[
769
,
769
])
eval_transforms
=
transforms
.
ComposedSegTransforms
(
mode
=
'eval'
)
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomHorizontalFlip
(),
transforms
.
ResizeRangeScaling
(),
transforms
.
RandomPaddingCrop
(
crop_size
=
512
),
transforms
.
Normalize
()
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
ResizeByLong
(
long_size
=
512
),
transforms
.
Padding
(
target_size
=
512
),
transforms
.
Normalize
()
])
# 定义训练和验证所用的数据集
# API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/semantic_segmentation.html#segdataset
...
...
tutorials/train/segmentation/hrnet.py
→
tutorials/train/se
mantic_se
gmentation/hrnet.py
浏览文件 @
d83ec51c
...
...
@@ -16,8 +16,8 @@ train_transforms = transforms.Compose([
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
ResizeByLong
(
long_size
=
512
),
transforms
.
Padding
(
target_size
=
512
),
transforms
.
Normalize
()
transforms
.
ResizeByLong
(
long_size
=
512
),
transforms
.
Padding
(
target_size
=
512
),
transforms
.
Normalize
()
])
# 定义训练和验证所用的数据集
...
...
tutorials/train/segmentation/unet.py
→
tutorials/train/se
mantic_se
gmentation/unet.py
浏览文件 @
d83ec51c
...
...
@@ -11,15 +11,12 @@ pdx.utils.download_and_decompress(optic_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms
=
transforms
.
Compose
([
transforms
.
RandomHorizontalFlip
(),
transforms
.
ResizeRangeScaling
(),
transforms
.
RandomPaddingCrop
(
crop_size
=
512
),
transforms
.
Normalize
()
transforms
.
RandomHorizontalFlip
(),
transforms
.
ResizeRangeScaling
(),
transforms
.
RandomPaddingCrop
(
crop_size
=
512
),
transforms
.
Normalize
()
])
eval_transforms
=
transforms
.
Compose
([
transforms
.
ResizeByLong
(
long_size
=
512
),
transforms
.
Padding
(
target_size
=
512
),
transforms
.
ResizeByLong
(
long_size
=
512
),
transforms
.
Padding
(
target_size
=
512
),
transforms
.
Normalize
()
])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录