提交 d3573319 编写于 作者: F FlyingQianMM

support mutil-channel transforms

上级 3bb6a779
...@@ -232,5 +232,7 @@ class Model { ...@@ -232,5 +232,7 @@ class Model {
std::vector<float> outputs_; std::vector<float> outputs_;
// a predictor which run the model predicting // a predictor which run the model predicting
std::unique_ptr<paddle::PaddlePredictor> predictor_; std::unique_ptr<paddle::PaddlePredictor> predictor_;
// input channel
int input_channel;
}; };
} // namespace PaddleX } // namespace PaddleX
...@@ -85,12 +85,12 @@ class Normalize : public Transform { ...@@ -85,12 +85,12 @@ class Normalize : public Transform {
if (item["min_val"].IsDefined()) { if (item["min_val"].IsDefined()) {
min_val_ = item["min_val"].as<std::vector<float>>(); min_val_ = item["min_val"].as<std::vector<float>>();
} else { } else {
min_val_ = std::vector<float>(0., mean_.size()); min_val_ = std::vector<float>(mean_.size(), 0.);
} }
if (item["max_val"].IsDefined()) { if (item["max_val"].IsDefined()) {
max_val_ = item["max_val"].as<std::vector<float>>(); max_val_ = item["max_val"].as<std::vector<float>>();
} else { } else {
max_val_ = std::vector<float>(255., mean_.size()); max_val_ = std::vector<float>(mean_.size(), 255.);
} }
} }
......
...@@ -134,6 +134,11 @@ bool Model::load_config(const std::string& yaml_input) { ...@@ -134,6 +134,11 @@ bool Model::load_config(const std::string& yaml_input) {
int index = labels.size(); int index = labels.size();
labels[index] = item.as<std::string>(); labels[index] = item.as<std::string>();
} }
if (config["_init_params"]["input_channel"].IsDefined()) {
input_channel = config["_init_params"]["input_channel"].as<int>();
} else {
input_channel = 3;
}
return true; return true;
} }
...@@ -179,7 +184,7 @@ bool Model::predict(const cv::Mat& im, ClsResult* result) { ...@@ -179,7 +184,7 @@ bool Model::predict(const cv::Mat& im, ClsResult* result) {
auto in_tensor = predictor_->GetInputTensor("image"); auto in_tensor = predictor_->GetInputTensor("image");
int h = inputs_.new_im_size_[0]; int h = inputs_.new_im_size_[0];
int w = inputs_.new_im_size_[1]; int w = inputs_.new_im_size_[1];
in_tensor->Reshape({1, 3, h, w}); in_tensor->Reshape({1, input_channel, h, w});
in_tensor->copy_from_cpu(inputs_.im_data_.data()); in_tensor->copy_from_cpu(inputs_.im_data_.data());
predictor_->ZeroCopyRun(); predictor_->ZeroCopyRun();
// get result // get result
...@@ -226,12 +231,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch, ...@@ -226,12 +231,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch,
auto in_tensor = predictor_->GetInputTensor("image"); auto in_tensor = predictor_->GetInputTensor("image");
int h = inputs_batch_[0].new_im_size_[0]; int h = inputs_batch_[0].new_im_size_[0];
int w = inputs_batch_[0].new_im_size_[1]; int w = inputs_batch_[0].new_im_size_[1];
in_tensor->Reshape({batch_size, 3, h, w}); in_tensor->Reshape({batch_size, input_channel, h, w});
std::vector<float> inputs_data(batch_size * 3 * h * w); std::vector<float> inputs_data(batch_size * input_channel * h * w);
for (int i = 0; i < batch_size; ++i) { for (int i = 0; i < batch_size; ++i) {
std::copy(inputs_batch_[i].im_data_.begin(), std::copy(inputs_batch_[i].im_data_.begin(),
inputs_batch_[i].im_data_.end(), inputs_batch_[i].im_data_.end(),
inputs_data.begin() + i * 3 * h * w); inputs_data.begin() + i * input_channel * h * w);
} }
in_tensor->copy_from_cpu(inputs_data.data()); in_tensor->copy_from_cpu(inputs_data.data());
// in_tensor->copy_from_cpu(inputs_.im_data_.data()); // in_tensor->copy_from_cpu(inputs_.im_data_.data());
...@@ -285,7 +290,7 @@ bool Model::predict(const cv::Mat& im, DetResult* result) { ...@@ -285,7 +290,7 @@ bool Model::predict(const cv::Mat& im, DetResult* result) {
int h = inputs_.new_im_size_[0]; int h = inputs_.new_im_size_[0];
int w = inputs_.new_im_size_[1]; int w = inputs_.new_im_size_[1];
auto im_tensor = predictor_->GetInputTensor("image"); auto im_tensor = predictor_->GetInputTensor("image");
im_tensor->Reshape({1, 3, h, w}); im_tensor->Reshape({1, input_channel, h, w});
im_tensor->copy_from_cpu(inputs_.im_data_.data()); im_tensor->copy_from_cpu(inputs_.im_data_.data());
if (name == "YOLOv3" || name == "PPYOLO") { if (name == "YOLOv3" || name == "PPYOLO") {
...@@ -439,12 +444,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch, ...@@ -439,12 +444,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch,
int h = inputs_batch_[0].new_im_size_[0]; int h = inputs_batch_[0].new_im_size_[0];
int w = inputs_batch_[0].new_im_size_[1]; int w = inputs_batch_[0].new_im_size_[1];
auto im_tensor = predictor_->GetInputTensor("image"); auto im_tensor = predictor_->GetInputTensor("image");
im_tensor->Reshape({batch_size, 3, h, w}); im_tensor->Reshape({batch_size, input_channel, h, w});
std::vector<float> inputs_data(batch_size * 3 * h * w); std::vector<float> inputs_data(batch_size * input_channel * h * w);
for (int i = 0; i < batch_size; ++i) { for (int i = 0; i < batch_size; ++i) {
std::copy(inputs_batch_[i].im_data_.begin(), std::copy(inputs_batch_[i].im_data_.begin(),
inputs_batch_[i].im_data_.end(), inputs_batch_[i].im_data_.end(),
inputs_data.begin() + i * 3 * h * w); inputs_data.begin() + i * input_channel * h * w);
} }
im_tensor->copy_from_cpu(inputs_data.data()); im_tensor->copy_from_cpu(inputs_data.data());
if (name == "YOLOv3" || name == "PPYOLO") { if (name == "YOLOv3" || name == "PPYOLO") {
...@@ -584,7 +589,7 @@ bool Model::predict(const cv::Mat& im, SegResult* result) { ...@@ -584,7 +589,7 @@ bool Model::predict(const cv::Mat& im, SegResult* result) {
int h = inputs_.new_im_size_[0]; int h = inputs_.new_im_size_[0];
int w = inputs_.new_im_size_[1]; int w = inputs_.new_im_size_[1];
auto im_tensor = predictor_->GetInputTensor("image"); auto im_tensor = predictor_->GetInputTensor("image");
im_tensor->Reshape({1, 3, h, w}); im_tensor->Reshape({1, input_channel, h, w});
im_tensor->copy_from_cpu(inputs_.im_data_.data()); im_tensor->copy_from_cpu(inputs_.im_data_.data());
// predict // predict
...@@ -698,12 +703,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch, ...@@ -698,12 +703,12 @@ bool Model::predict(const std::vector<cv::Mat>& im_batch,
int h = inputs_batch_[0].new_im_size_[0]; int h = inputs_batch_[0].new_im_size_[0];
int w = inputs_batch_[0].new_im_size_[1]; int w = inputs_batch_[0].new_im_size_[1];
auto im_tensor = predictor_->GetInputTensor("image"); auto im_tensor = predictor_->GetInputTensor("image");
im_tensor->Reshape({batch_size, 3, h, w}); im_tensor->Reshape({batch_size, input_channel, h, w});
std::vector<float> inputs_data(batch_size * 3 * h * w); std::vector<float> inputs_data(batch_size * input_channel * h * w);
for (int i = 0; i < batch_size; ++i) { for (int i = 0; i < batch_size; ++i) {
std::copy(inputs_batch_[i].im_data_.begin(), std::copy(inputs_batch_[i].im_data_.begin(),
inputs_batch_[i].im_data_.end(), inputs_batch_[i].im_data_.end(),
inputs_data.begin() + i * 3 * h * w); inputs_data.begin() + i * input_channel * h * w);
} }
im_tensor->copy_from_cpu(inputs_data.data()); im_tensor->copy_from_cpu(inputs_data.data());
// im_tensor->copy_from_cpu(inputs_.im_data_.data()); // im_tensor->copy_from_cpu(inputs_.im_data_.data());
......
...@@ -20,7 +20,6 @@ ...@@ -20,7 +20,6 @@
#include <string> #include <string>
#include <vector> #include <vector>
namespace PaddleX { namespace PaddleX {
std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR}, std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
...@@ -30,16 +29,20 @@ std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR}, ...@@ -30,16 +29,20 @@ std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
{"LANCZOS4", cv::INTER_LANCZOS4}}; {"LANCZOS4", cv::INTER_LANCZOS4}};
bool Normalize::Run(cv::Mat* im, ImageBlob* data) { bool Normalize::Run(cv::Mat* im, ImageBlob* data) {
std::vector<float> range_val;
for (int c = 0; c < im->channels(); c++) { for (int c = 0; c < im->channels(); c++) {
float range_val = max_val_[c] - min_val_[c]; range_val.push_back(max_val_[c] - min_val_[c]);
for (int h = 0; h < im->rows; h++) { }
for (int w = 0; w < im->cols; w++) {
im->at<cv::Vec3f>(h, w)[c] = std::vector<cv::Mat> split_im;
((im->at<cv::Vec3f>(h, w)[c] - min_val_[c]) / range_val - cv::split(*im, split_im);
mean_[c]) / std_[c]; for (int c = 0; c < im->channels(); c++) {
} cv::subtract(split_im[c], cv::Scalar(min_val_[c]), split_im[c]);
} cv::divide(split_im[c], cv::Scalar(range_val[c]), split_im[c]);
cv::subtract(split_im[c], cv::Scalar(mean_[c]), split_im[c]);
cv::divide(split_im[c], cv::Scalar(std_[c]), split_im[c]);
} }
cv::merge(split_im, *im);
return true; return true;
} }
...@@ -115,7 +118,10 @@ bool Padding::Run(cv::Mat* im, ImageBlob* data) { ...@@ -115,7 +118,10 @@ bool Padding::Run(cv::Mat* im, ImageBlob* data) {
} }
std::vector<cv::Mat> padded_im_per_channel; std::vector<cv::Mat> padded_im_per_channel;
for (size_t i = 0; i < im->channels(); i++) { for (size_t i = 0; i < im->channels(); i++) {
const cv::Mat per_channel = cv::Mat(im->size(), CV_32FC1, im_value_[i]); const cv::Mat per_channel = cv::Mat(im->rows + padding_h,
im->cols + padding_w,
CV_32FC1,
cv::Scalar(im_value_[i]));
padded_im_per_channel.push_back(per_channel); padded_im_per_channel.push_back(per_channel);
} }
cv::Mat padded_im; cv::Mat padded_im;
...@@ -125,6 +131,7 @@ bool Padding::Run(cv::Mat* im, ImageBlob* data) { ...@@ -125,6 +131,7 @@ bool Padding::Run(cv::Mat* im, ImageBlob* data) {
*im = padded_im; *im = padded_im;
data->new_im_size_[0] = im->rows; data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols; data->new_im_size_[1] = im->cols;
return true; return true;
} }
...@@ -171,18 +178,17 @@ bool Resize::Run(cv::Mat* im, ImageBlob* data) { ...@@ -171,18 +178,17 @@ bool Resize::Run(cv::Mat* im, ImageBlob* data) {
} }
bool Clip::Run(cv::Mat* im, ImageBlob* data) { bool Clip::Run(cv::Mat* im, ImageBlob* data) {
for (int h = 0; h < im->rows; h++) { std::vector<cv::Mat> split_im;
for (int w = 0; w < im->cols; w++) { cv::split(*im, split_im);
for (int c = 0; c < im->channels(); c++) { for (int c = 0; c < im->channels(); c++) {
if (im->at<cv::Vec3f>(h, w)[c] < min_val_[c]) { cv::threshold(split_im[c], split_im[c], max_val_[c], max_val_[c],
im->at<cv::Vec3f>(h, w)[c] = min_val_[c]; cv::THRESH_TRUNC);
} cv::subtract(cv::Scalar(0), split_im[c], split_im[c]);
if (im->at<cv::Vec3f>(h, w)[c] > max_val_[c]) { cv::threshold(split_im[c], split_im[c], min_val_[c], min_val_[c],
im->at<cv::Vec3f>(h, w)[c] = max_val_[c]; cv::THRESH_TRUNC);
} cv::divide(split_im[c], cv::Scalar(-1), split_im[c]);
}
}
} }
cv::merge(split_im, *im);
return true; return true;
} }
...@@ -191,7 +197,6 @@ void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) { ...@@ -191,7 +197,6 @@ void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) {
to_rgb_ = to_rgb; to_rgb_ = to_rgb;
for (const auto& item : transforms_node) { for (const auto& item : transforms_node) {
std::string name = item.begin()->first.as<std::string>(); std::string name = item.begin()->first.as<std::string>();
std::cout << "trans name: " << name << std::endl;
std::shared_ptr<Transform> transform = CreateTransform(name); std::shared_ptr<Transform> transform = CreateTransform(name);
transform->Init(item.begin()->second); transform->Init(item.begin()->second);
transforms_.push_back(transform); transforms_.push_back(transform);
...@@ -212,6 +217,8 @@ std::shared_ptr<Transform> Transforms::CreateTransform( ...@@ -212,6 +217,8 @@ std::shared_ptr<Transform> Transforms::CreateTransform(
return std::make_shared<Padding>(); return std::make_shared<Padding>();
} else if (transform_name == "ResizeByLong") { } else if (transform_name == "ResizeByLong") {
return std::make_shared<ResizeByLong>(); return std::make_shared<ResizeByLong>();
} else if (transform_name == "Clip") {
return std::make_shared<Clip>();
} else { } else {
std::cerr << "There's unexpected transform(name='" << transform_name std::cerr << "There's unexpected transform(name='" << transform_name
<< "')." << std::endl; << "')." << std::endl;
...@@ -224,7 +231,7 @@ bool Transforms::Run(cv::Mat* im, ImageBlob* data) { ...@@ -224,7 +231,7 @@ bool Transforms::Run(cv::Mat* im, ImageBlob* data) {
if (to_rgb_) { if (to_rgb_) {
cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB); cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
} }
(*im).convertTo(*im, CV_32FC3); (*im).convertTo(*im, CV_32FC(im->channels()));
data->ori_im_size_[0] = im->rows; data->ori_im_size_[0] = im->rows;
data->ori_im_size_[1] = im->cols; data->ori_im_size_[1] = im->cols;
data->new_im_size_[0] = im->rows; data->new_im_size_[0] = im->rows;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册