提交 ceb1fdf7 编写于 作者: J jiangjiajun

update docs

上级 25d5b693
......@@ -122,6 +122,7 @@ paddlex.cls.transforms.RandomDistort(brightness_range=0.9, brightness_prob=0.5,
* **hue_range** (int): 色调因子的范围。默认为18。
* **hue_prob** (float): 随机调整色调的概率。默认为0.5。
<!--
## ComposedClsTransforms
```python
paddlex.cls.transforms.ComposedClsTransforms(mode, crop_size=[224, 224], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
......@@ -183,3 +184,4 @@ eval_transforms = transforms.Composed([
transforms.Normalize()
])
```
-->
......@@ -168,6 +168,7 @@ paddlex.det.transforms.RandomCrop(aspect_ratio=[.5, 2.], thresholds=[.0, .1, .3,
* **allow_no_crop** (bool): 是否允许未进行裁剪。默认值为True。
* **cover_all_box** (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
<!--
## ComposedRCNNTransforms
```python
paddlex.det.transforms.ComposedRCNNTransforms(mode, min_max_size=[224, 224], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
......@@ -302,3 +303,4 @@ eval_transforms = transforms.Composed([
transforms.Normalize()
])
```
-->
......@@ -167,6 +167,7 @@ paddlex.seg.transforms.RandomDistort(brightness_range=0.5, brightness_prob=0.5,
* **hue_range** (int): 色调因子的范围。默认为18。
* **hue_prob** (float): 随机调整色调的概率。默认为0.5。
<!--
## ComposedSegTransforms
```python
paddlex.det.transforms.ComposedSegTransforms(mode, min_max_size=[400, 600], train_crop_shape=[769, 769], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
......@@ -228,3 +229,4 @@ eval_transforms = transforms.Composed([
transforms.Normalize()
])
```
-->
......@@ -10,10 +10,10 @@ PaddleX共提供了20+的图像分类模型,可满足开发者不同场景的
| 模型(点击获取代码) | Top1精度 | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
| [MobileNetV3_small_ssld](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/mobilenetv3_small_ssld.py) | 71.3% | 21.0MB | 6.809ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
| [MobileNetV2](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/mobilenetv2.py) | 72.2% | 14.0MB | 4.546ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
| [ShuffleNetV2](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/shufflenetv2.py) | 68.8% | 9.0MB | 6.101ms | - | 模型体积小,预测速度快,适用于低性能或移动端设备 |
| [ResNet50_vd_ssld](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/resnet50_vd_ssld.py) | 82.4% | 102.8MB | 9.058ms | - | 模型精度高,适用于服务端部署 |
| [MobileNetV3_small_ssld](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/mobilenetv3_small_ssld.py) | 71.3% | 21.0MB | 6.809ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
| [MobileNetV2](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/mobilenetv2.py) | 72.2% | 14.0MB | 4.546ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
| [ShuffleNetV2](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/shufflenetv2.py) | 68.8% | 9.0MB | 6.101ms | - | 模型体积小,预测速度快,适用于低性能或移动端设备 |
| [ResNet50_vd_ssld](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/resnet50_vd_ssld.py) | 82.4% | 102.8MB | 9.058ms | - | 模型精度高,适用于服务端部署 |
## 开始训练
......
......@@ -10,9 +10,9 @@ PaddleX目前提供了MaskRCNN实例分割模型结构,多种backbone模型,
| 模型(点击获取代码) | Box MMAP/Seg MMAP | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
| [MaskRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py) | 36.5%/32.2% | 170.0MB | 160.185ms | - | 模型精度高,适用于服务端部署 |
| [MaskRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/instance_segmentation/mask_rcnn_r18_fpn.py) | -/- | 120.0MB | - | - | 模型精度高,适用于服务端部署 |
| [MaskRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py) | -/- | 116.MB | - | - | 模型精度高,预测速度快,适用于服务端部署 |
| [MaskRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py) | 36.5%/32.2% | 170.0MB | 160.185ms | - | 模型精度高,适用于服务端部署 |
| [MaskRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_r18_fpn.py) | -/- | 120.0MB | - | - | 模型精度高,适用于服务端部署 |
| [MaskRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py) | -/- | 116.MB | - | - | 模型精度高,预测速度快,适用于服务端部署 |
## 开始训练
......
......@@ -10,12 +10,12 @@ PaddleX目前提供了FasterRCNN和YOLOv3两种检测结构,多种backbone模型
| 模型(点击获取代码) | Box MMAP | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
| [YOLOv3-MobileNetV1](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/yolov3_mobilenetv1.py) | 29.3% | 99.2MB | 15.442ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
| [YOLOv3-MobileNetV3](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/yolov3_mobilenetv3.py) | 31.6% | 100.7MB | 143.322ms | - | 模型小,移动端上预测速度有优势 |
| [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/yolov3_darknet53.py) | 38.9 | 249.2MB | 42.672ms | - | 模型较大,预测速度快,适用于服务端 |
| [FasterRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/faster_rcnn_r50_fpn.py) | 37.2% | 136.0MB | 197.715ms | - | 模型精度高,适用于服务端部署 |
| [FasterRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/faster_rcnn_r18_fpn.py) | - | - | - | - | 模型精度高,适用于服务端部署 |
| [FasterRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py) | 36.0% | 115.MB | 81.592ms | - | 模型精度高,预测速度快,适用于服务端部署 |
| [YOLOv3-MobileNetV1](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_mobilenetv1.py) | 29.3% | 99.2MB | 15.442ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
| [YOLOv3-MobileNetV3](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_mobilenetv3.py) | 31.6% | 100.7MB | 143.322ms | - | 模型小,移动端上预测速度有优势 |
| [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_darknet53.py) | 38.9 | 249.2MB | 42.672ms | - | 模型较大,预测速度快,适用于服务端 |
| [FasterRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_r50_fpn.py) | 37.2% | 136.0MB | 197.715ms | - | 模型精度高,适用于服务端部署 |
| [FasterRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_r18_fpn.py) | - | - | - | - | 模型精度高,适用于服务端部署 |
| [FasterRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py) | 36.0% | 115.MB | 81.592ms | - | 模型精度高,预测速度快,适用于服务端部署 |
## 开始训练
......
......@@ -10,12 +10,12 @@ PaddleX目前提供了DeepLabv3p、UNet、HRNet和FastSCNN四种语义分割结
| 模型(点击获取代码) | mIOU | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
| [DeepLabv3p-MobileNetV2-x0.25](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2_x0.25.py) | - | 2.9MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
| [DeepLabv3p-MobileNetV2-x1.0](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2.py) | 69.8% | 11MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
| [DeepLabv3p-Xception65](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/deeplabv3p_xception65.pyy) | 79.3% | 158MB | - | - | 模型大,精度高,适用于服务端 |
| [UNet](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/unet.py) | - | 52MB | - | - | 模型较大,精度高,适用于服务端 |
| [HRNet](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/hrnet.py) | 79.4% | 37MB | - | - | 模型较小,模型精度高,适用于服务端部署 |
| [FastSCNN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/fast_scnn.py) | - | 4.5MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
| [DeepLabv3p-MobileNetV2-x0.25](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2_x0.25.py) | - | 2.9MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
| [DeepLabv3p-MobileNetV2-x1.0](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2.py) | 69.8% | 11MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
| [DeepLabv3p-Xception65](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/deeplabv3p_xception65.pyy) | 79.3% | 158MB | - | - | 模型大,精度高,适用于服务端 |
| [UNet](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/unet.py) | - | 52MB | - | - | 模型较大,精度高,适用于服务端 |
| [HRNet](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/hrnet.py) | 79.4% | 37MB | - | - | 模型较小,模型精度高,适用于服务端部署 |
| [FastSCNN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/fast_scnn.py) | - | 4.5MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
## 开始训练
......
......@@ -13,6 +13,7 @@
# limitations under the License.
from __future__ import absolute_import
import os
if 'FLAGS_eager_delete_tensor_gb' not in os.environ:
os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
......@@ -21,6 +22,7 @@ if 'FLAGS_allocator_strategy' not in os.environ:
if "CUDA_VISIBLE_DEVICES" in os.environ:
if os.environ["CUDA_VISIBLE_DEVICES"].count("-1") > 0:
os.environ["CUDA_VISIBLE_DEVICES"] = ""
from .utils.utils import get_environ_info
from . import cv
from . import det
......@@ -38,7 +40,7 @@ except:
"[WARNING] pycocotools is not installed, detection model is not available now."
)
print(
"[WARNING] pycocotools install: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/install.md"
"[WARNING] pycocotools install: https://paddlex.readthedocs.io/zh_CN/develop/install.html#pycocotools"
)
import paddlehub as hub
......@@ -54,4 +56,4 @@ log_level = 2
from . import interpret
__version__ = '1.0.7'
__version__ = '1.0.8'
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册