Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
ceb1fdf7
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ceb1fdf7
编写于
7月 12, 2020
作者:
J
jiangjiajun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update docs
上级
25d5b693
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
29 addition
and
21 deletion
+29
-21
docs/apis/transforms/cls_transforms.md
docs/apis/transforms/cls_transforms.md
+2
-0
docs/apis/transforms/det_transforms.md
docs/apis/transforms/det_transforms.md
+2
-0
docs/apis/transforms/seg_transforms.md
docs/apis/transforms/seg_transforms.md
+2
-0
docs/train/classification.md
docs/train/classification.md
+4
-4
docs/train/instance_segmentation.md
docs/train/instance_segmentation.md
+3
-3
docs/train/object_detection.md
docs/train/object_detection.md
+6
-6
docs/train/semantic_segmentation.md
docs/train/semantic_segmentation.md
+6
-6
paddlex/__init__.py
paddlex/__init__.py
+4
-2
未找到文件。
docs/apis/transforms/cls_transforms.md
浏览文件 @
ceb1fdf7
...
...
@@ -122,6 +122,7 @@ paddlex.cls.transforms.RandomDistort(brightness_range=0.9, brightness_prob=0.5,
*
**hue_range**
(int): 色调因子的范围。默认为18。
*
**hue_prob**
(float): 随机调整色调的概率。默认为0.5。
<!--
## ComposedClsTransforms
```
python
paddlex
.
cls
.
transforms
.
ComposedClsTransforms
(
mode
,
crop_size
=
[
224
,
224
],
mean
=
[
0.485
,
0.456
,
0.406
],
std
=
[
0.229
,
0.224
,
0.225
],
random_horizontal_flip
=
True
)
...
...
@@ -183,3 +184,4 @@ eval_transforms = transforms.Composed([
transforms.Normalize()
])
``
`
-->
docs/apis/transforms/det_transforms.md
浏览文件 @
ceb1fdf7
...
...
@@ -168,6 +168,7 @@ paddlex.det.transforms.RandomCrop(aspect_ratio=[.5, 2.], thresholds=[.0, .1, .3,
*
**allow_no_crop**
(bool): 是否允许未进行裁剪。默认值为True。
*
**cover_all_box**
(bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
<!--
## ComposedRCNNTransforms
```
python
paddlex
.
det
.
transforms
.
ComposedRCNNTransforms
(
mode
,
min_max_size
=
[
224
,
224
],
mean
=
[
0.485
,
0.456
,
0.406
],
std
=
[
0.229
,
0.224
,
0.225
],
random_horizontal_flip
=
True
)
...
...
@@ -302,3 +303,4 @@ eval_transforms = transforms.Composed([
transforms.Normalize()
])
```
-->
docs/apis/transforms/seg_transforms.md
浏览文件 @
ceb1fdf7
...
...
@@ -167,6 +167,7 @@ paddlex.seg.transforms.RandomDistort(brightness_range=0.5, brightness_prob=0.5,
*
**hue_range**
(int): 色调因子的范围。默认为18。
*
**hue_prob**
(float): 随机调整色调的概率。默认为0.5。
<!--
## ComposedSegTransforms
```
python
paddlex
.
det
.
transforms
.
ComposedSegTransforms
(
mode
,
min_max_size
=
[
400
,
600
],
train_crop_shape
=
[
769
,
769
],
mean
=
[
0.485
,
0.456
,
0.406
],
std
=
[
0.229
,
0.224
,
0.225
],
random_horizontal_flip
=
True
)
...
...
@@ -228,3 +229,4 @@ eval_transforms = transforms.Composed([
transforms.Normalize()
])
``
`
-->
docs/train/classification.md
浏览文件 @
ceb1fdf7
...
...
@@ -10,10 +10,10 @@ PaddleX共提供了20+的图像分类模型,可满足开发者不同场景的
| 模型(点击获取代码) | Top1精度 | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
|
[
MobileNetV3_small_ssld
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/image_classification/mobilenetv3_small_ssld.py
)
| 71.3% | 21.0MB | 6.809ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
MobileNetV2
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/image_classification/mobilenetv2.py
)
| 72.2% | 14.0MB | 4.546ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
ShuffleNetV2
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/image_classification/shufflenetv2.py
)
| 68.8% | 9.0MB | 6.101ms | - | 模型体积小,预测速度快,适用于低性能或移动端设备 |
|
[
ResNet50_vd_ssld
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/image_classification/resnet50_vd_ssld.py
)
| 82.4% | 102.8MB | 9.058ms | - | 模型精度高,适用于服务端部署 |
|
[
MobileNetV3_small_ssld
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/image_classification/mobilenetv3_small_ssld.py
)
| 71.3% | 21.0MB | 6.809ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
MobileNetV2
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/image_classification/mobilenetv2.py
)
| 72.2% | 14.0MB | 4.546ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
ShuffleNetV2
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/image_classification/shufflenetv2.py
)
| 68.8% | 9.0MB | 6.101ms | - | 模型体积小,预测速度快,适用于低性能或移动端设备 |
|
[
ResNet50_vd_ssld
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/image_classification/resnet50_vd_ssld.py
)
| 82.4% | 102.8MB | 9.058ms | - | 模型精度高,适用于服务端部署 |
## 开始训练
...
...
docs/train/instance_segmentation.md
浏览文件 @
ceb1fdf7
...
...
@@ -10,9 +10,9 @@ PaddleX目前提供了MaskRCNN实例分割模型结构,多种backbone模型,
| 模型(点击获取代码) | Box MMAP/Seg MMAP | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
|
[
MaskRCNN-ResNet50-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py
)
| 36.5%/32.2% | 170.0MB | 160.185ms | - | 模型精度高,适用于服务端部署 |
|
[
MaskRCNN-ResNet18-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/instance_segmentation/mask_rcnn_r18_fpn.py
)
| -/- | 120.0MB | - | - | 模型精度高,适用于服务端部署 |
|
[
MaskRCNN-HRNet-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py
)
| -/- | 116.MB | - | - | 模型精度高,预测速度快,适用于服务端部署 |
|
[
MaskRCNN-ResNet50-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py
)
| 36.5%/32.2% | 170.0MB | 160.185ms | - | 模型精度高,适用于服务端部署 |
|
[
MaskRCNN-ResNet18-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/instance_segmentation/mask_rcnn_r18_fpn.py
)
| -/- | 120.0MB | - | - | 模型精度高,适用于服务端部署 |
|
[
MaskRCNN-HRNet-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py
)
| -/- | 116.MB | - | - | 模型精度高,预测速度快,适用于服务端部署 |
## 开始训练
...
...
docs/train/object_detection.md
浏览文件 @
ceb1fdf7
...
...
@@ -10,12 +10,12 @@ PaddleX目前提供了FasterRCNN和YOLOv3两种检测结构,多种backbone模型
| 模型(点击获取代码) | Box MMAP | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
|
[
YOLOv3-MobileNetV1
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/object_detection/yolov3_mobilenetv1.py
)
| 29.3% | 99.2MB | 15.442ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
YOLOv3-MobileNetV3
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/object_detection/yolov3_mobilenetv3.py
)
| 31.6% | 100.7MB | 143.322ms | - | 模型小,移动端上预测速度有优势 |
|
[
YOLOv3-DarkNet53
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/object_detection/yolov3_darknet53.py
)
| 38.9 | 249.2MB | 42.672ms | - | 模型较大,预测速度快,适用于服务端 |
|
[
FasterRCNN-ResNet50-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/object_detection/faster_rcnn_r50_fpn.py
)
| 37.2% | 136.0MB | 197.715ms | - | 模型精度高,适用于服务端部署 |
|
[
FasterRCNN-ResNet18-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/object_detection/faster_rcnn_r18_fpn.py
)
| - | - | - | - | 模型精度高,适用于服务端部署 |
|
[
FasterRCNN-HRNet-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py
)
| 36.0% | 115.MB | 81.592ms | - | 模型精度高,预测速度快,适用于服务端部署 |
|
[
YOLOv3-MobileNetV1
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/object_detection/yolov3_mobilenetv1.py
)
| 29.3% | 99.2MB | 15.442ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
YOLOv3-MobileNetV3
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/object_detection/yolov3_mobilenetv3.py
)
| 31.6% | 100.7MB | 143.322ms | - | 模型小,移动端上预测速度有优势 |
|
[
YOLOv3-DarkNet53
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/object_detection/yolov3_darknet53.py
)
| 38.9 | 249.2MB | 42.672ms | - | 模型较大,预测速度快,适用于服务端 |
|
[
FasterRCNN-ResNet50-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/object_detection/faster_rcnn_r50_fpn.py
)
| 37.2% | 136.0MB | 197.715ms | - | 模型精度高,适用于服务端部署 |
|
[
FasterRCNN-ResNet18-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/object_detection/faster_rcnn_r18_fpn.py
)
| - | - | - | - | 模型精度高,适用于服务端部署 |
|
[
FasterRCNN-HRNet-FPN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py
)
| 36.0% | 115.MB | 81.592ms | - | 模型精度高,预测速度快,适用于服务端部署 |
## 开始训练
...
...
docs/train/semantic_segmentation.md
浏览文件 @
ceb1fdf7
...
...
@@ -10,12 +10,12 @@ PaddleX目前提供了DeepLabv3p、UNet、HRNet和FastSCNN四种语义分割结
| 模型(点击获取代码) | mIOU | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
|
[
DeepLabv3p-MobileNetV2-x0.25
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2_x0.25.py
)
| - | 2.9MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
DeepLabv3p-MobileNetV2-x1.0
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2.py
)
| 69.8% | 11MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
DeepLabv3p-Xception65
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/semantic_segmentation/deeplabv3p_xception65.pyy
)
| 79.3% | 158MB | - | - | 模型大,精度高,适用于服务端 |
|
[
UNet
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/semantic_segmentation/unet.py
)
| - | 52MB | - | - | 模型较大,精度高,适用于服务端 |
|
[
HRNet
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/semantic_segmentation/hrnet.py
)
| 79.4% | 37MB | - | - | 模型较小,模型精度高,适用于服务端部署 |
|
[
FastSCNN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
oc
/tutorials/train/semantic_segmentation/fast_scnn.py
)
| - | 4.5MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
DeepLabv3p-MobileNetV2-x0.25
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2_x0.25.py
)
| - | 2.9MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
DeepLabv3p-MobileNetV2-x1.0
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2.py
)
| 69.8% | 11MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
|
[
DeepLabv3p-Xception65
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/semantic_segmentation/deeplabv3p_xception65.pyy
)
| 79.3% | 158MB | - | - | 模型大,精度高,适用于服务端 |
|
[
UNet
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/semantic_segmentation/unet.py
)
| - | 52MB | - | - | 模型较大,精度高,适用于服务端 |
|
[
HRNet
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/semantic_segmentation/hrnet.py
)
| 79.4% | 37MB | - | - | 模型较小,模型精度高,适用于服务端部署 |
|
[
FastSCNN
](
https://github.com/PaddlePaddle/PaddleX/blob/d
evelop
/tutorials/train/semantic_segmentation/fast_scnn.py
)
| - | 4.5MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
## 开始训练
...
...
paddlex/__init__.py
浏览文件 @
ceb1fdf7
...
...
@@ -13,6 +13,7 @@
# limitations under the License.
from
__future__
import
absolute_import
import
os
if
'FLAGS_eager_delete_tensor_gb'
not
in
os
.
environ
:
os
.
environ
[
'FLAGS_eager_delete_tensor_gb'
]
=
'0.0'
...
...
@@ -21,6 +22,7 @@ if 'FLAGS_allocator_strategy' not in os.environ:
if
"CUDA_VISIBLE_DEVICES"
in
os
.
environ
:
if
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
].
count
(
"-1"
)
>
0
:
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
=
""
from
.utils.utils
import
get_environ_info
from
.
import
cv
from
.
import
det
...
...
@@ -38,7 +40,7 @@ except:
"[WARNING] pycocotools is not installed, detection model is not available now."
)
print
(
"[WARNING] pycocotools install: https://
github.com/PaddlePaddle/PaddleX/blob/develop/docs/install.md
"
"[WARNING] pycocotools install: https://
paddlex.readthedocs.io/zh_CN/develop/install.html#pycocotools
"
)
import
paddlehub
as
hub
...
...
@@ -54,4 +56,4 @@ log_level = 2
from
.
import
interpret
__version__
=
'1.0.
7
'
__version__
=
'1.0.
8
'
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录