Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
c2548389
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c2548389
编写于
5月 26, 2020
作者:
J
Jason
提交者:
GitHub
5月 26, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #106 from PaddlePaddle/develop_jason
Develop jason
上级
7acf4f36
6c008a04
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
248 addition
and
37 deletion
+248
-37
docs/apis/transforms/augment.md
docs/apis/transforms/augment.md
+1
-1
docs/apis/transforms/seg_transforms.md
docs/apis/transforms/seg_transforms.md
+1
-1
paddlex/__init__.py
paddlex/__init__.py
+1
-1
paddlex/cv/datasets/dataset.py
paddlex/cv/datasets/dataset.py
+4
-4
paddlex/cv/models/deeplabv3p.py
paddlex/cv/models/deeplabv3p.py
+20
-19
paddlex/cv/nets/segmentation/deeplabv3p.py
paddlex/cv/nets/segmentation/deeplabv3p.py
+8
-8
paddlex/cv/transforms/cls_transforms.py
paddlex/cv/transforms/cls_transforms.py
+59
-0
paddlex/cv/transforms/det_transforms.py
paddlex/cv/transforms/det_transforms.py
+111
-0
paddlex/cv/transforms/seg_transforms.py
paddlex/cv/transforms/seg_transforms.py
+42
-0
paddlex/deploy.py
paddlex/deploy.py
+0
-2
setup.py
setup.py
+1
-1
未找到文件。
docs/apis/transforms/augment.md
浏览文件 @
c2548389
...
@@ -10,7 +10,7 @@ PaddleX对于图像分类、目标检测、实例分割和语义分割内置了
...
@@ -10,7 +10,7 @@ PaddleX对于图像分类、目标检测、实例分割和语义分割内置了
| :------- | :------------|
| :------- | :------------|
| 图像分类 |
[
RandomCrop
](
cls_transforms.html#randomcrop
)
、
[
RandomHorizontalFlip
](
cls_transforms.html#randomhorizontalflip
)
、
[
RandomVerticalFlip
](
cls_transforms.html#randomverticalflip
)
、
<br>
[
RandomRotate
](
cls_transforms.html#randomratate
)
、
[
RandomDistort
](
cls_transforms.html#randomdistort
)
|
| 图像分类 |
[
RandomCrop
](
cls_transforms.html#randomcrop
)
、
[
RandomHorizontalFlip
](
cls_transforms.html#randomhorizontalflip
)
、
[
RandomVerticalFlip
](
cls_transforms.html#randomverticalflip
)
、
<br>
[
RandomRotate
](
cls_transforms.html#randomratate
)
、
[
RandomDistort
](
cls_transforms.html#randomdistort
)
|
|目标检测
<br>
实例分割|
[
RandomHorizontalFlip
](
det_transforms.html#randomhorizontalflip
)
、
[
RandomDistort
](
det_transforms.html#randomdistort
)
、
[
RandomCrop
](
det_transforms.html#randomcrop
)
、
<br>
[
MixupImage
](
det_transforms.html#mixupimage
)(
仅支持YOLOv3模型
)
、
[
RandomExpand
](
det_transforms.html#randomexpand
)
|
|目标检测
<br>
实例分割|
[
RandomHorizontalFlip
](
det_transforms.html#randomhorizontalflip
)
、
[
RandomDistort
](
det_transforms.html#randomdistort
)
、
[
RandomCrop
](
det_transforms.html#randomcrop
)
、
<br>
[
MixupImage
](
det_transforms.html#mixupimage
)(
仅支持YOLOv3模型
)
、
[
RandomExpand
](
det_transforms.html#randomexpand
)
|
|语义分割 |
[
RandomHorizontalFlip
](
seg_transforms.html#randomhorizontalflip
)
、
[
RandomVerticalFlip
](
seg_transforms.html#randomverticalflip
)
、
[
RandomRangeScaling
](
seg_transforms.html#randomrangescaling
)
、
<br>
[
RandomStepScaling
](
seg_transforms.html#randomstepscaling
)
、
[
RandomPaddingCrop
](
seg_transforms.html#randompaddingcrop
)
、
[
RandomBlur
](
seg_transforms.html#randomblur
)
、
<br>
[
RandomRotat
ion
](
seg_transforms.html#randomrotation
)
、
[
RandomScaleAspect
](
seg_transforms.html#randomscaleaspect
)
、
[
RandomDistort
](
seg_transforms.html#randomdistort
)
|
|语义分割 |
[
RandomHorizontalFlip
](
seg_transforms.html#randomhorizontalflip
)
、
[
RandomVerticalFlip
](
seg_transforms.html#randomverticalflip
)
、
[
RandomRangeScaling
](
seg_transforms.html#randomrangescaling
)
、
<br>
[
RandomStepScaling
](
seg_transforms.html#randomstepscaling
)
、
[
RandomPaddingCrop
](
seg_transforms.html#randompaddingcrop
)
、
[
RandomBlur
](
seg_transforms.html#randomblur
)
、
<br>
[
RandomRotat
e
](
seg_transforms.html#randomrotate
)
、
[
RandomScaleAspect
](
seg_transforms.html#randomscaleaspect
)
、
[
RandomDistort
](
seg_transforms.html#randomdistort
)
|
## imgaug增强库的支持
## imgaug增强库的支持
...
...
docs/apis/transforms/seg_transforms.md
浏览文件 @
c2548389
...
@@ -120,7 +120,7 @@ paddlex.seg.transforms.RandomBlur(prob=0.1)
...
@@ -120,7 +120,7 @@ paddlex.seg.transforms.RandomBlur(prob=0.1)
*
**prob**
(float): 图像模糊概率。默认为0.1。
*
**prob**
(float): 图像模糊概率。默认为0.1。
## RandomRotat
ion
类
## RandomRotat
e
类
```
python
```
python
paddlex
.
seg
.
transforms
.
RandomRotate
(
rotate_range
=
15
,
im_padding_value
=
[
127.5
,
127.5
,
127.5
],
label_padding_value
=
255
)
paddlex
.
seg
.
transforms
.
RandomRotate
(
rotate_range
=
15
,
im_padding_value
=
[
127.5
,
127.5
,
127.5
],
label_padding_value
=
255
)
```
```
...
...
paddlex/__init__.py
浏览文件 @
c2548389
...
@@ -53,4 +53,4 @@ log_level = 2
...
@@ -53,4 +53,4 @@ log_level = 2
from
.
import
interpret
from
.
import
interpret
__version__
=
'1.0.
2.github
'
__version__
=
'1.0.
4
'
paddlex/cv/datasets/dataset.py
浏览文件 @
c2548389
...
@@ -209,8 +209,8 @@ def GenerateMiniBatch(batch_data):
...
@@ -209,8 +209,8 @@ def GenerateMiniBatch(batch_data):
padding_batch
=
[]
padding_batch
=
[]
for
data
in
batch_data
:
for
data
in
batch_data
:
im_c
,
im_h
,
im_w
=
data
[
0
].
shape
[:]
im_c
,
im_h
,
im_w
=
data
[
0
].
shape
[:]
padding_im
=
np
.
zeros
(
(
im_c
,
max_shape
[
1
],
max_shape
[
2
]),
padding_im
=
np
.
zeros
(
dtype
=
np
.
float32
)
(
im_c
,
max_shape
[
1
],
max_shape
[
2
]),
dtype
=
np
.
float32
)
padding_im
[:,
:
im_h
,
:
im_w
]
=
data
[
0
]
padding_im
[:,
:
im_h
,
:
im_w
]
=
data
[
0
]
padding_batch
.
append
((
padding_im
,
)
+
data
[
1
:])
padding_batch
.
append
((
padding_im
,
)
+
data
[
1
:])
return
padding_batch
return
padding_batch
...
@@ -226,8 +226,8 @@ class Dataset:
...
@@ -226,8 +226,8 @@ class Dataset:
if
num_workers
==
'auto'
:
if
num_workers
==
'auto'
:
import
multiprocessing
as
mp
import
multiprocessing
as
mp
num_workers
=
mp
.
cpu_count
()
//
2
if
mp
.
cpu_count
()
//
2
<
8
else
8
num_workers
=
mp
.
cpu_count
()
//
2
if
mp
.
cpu_count
()
//
2
<
8
else
8
if
platform
.
platform
().
startswith
(
if
platform
.
platform
().
startswith
(
"Darwin"
)
or
platform
.
platform
(
"Darwin"
)
or
platform
.
platform
(
).
startswith
(
"Windows"
):
).
startswith
(
"Windows"
):
parallel_method
=
'thread'
parallel_method
=
'thread'
if
transforms
is
None
:
if
transforms
is
None
:
raise
Exception
(
"transform should be defined."
)
raise
Exception
(
"transform should be defined."
)
...
...
paddlex/cv/models/deeplabv3p.py
浏览文件 @
c2548389
...
@@ -190,11 +190,6 @@ class DeepLabv3p(BaseAPI):
...
@@ -190,11 +190,6 @@ class DeepLabv3p(BaseAPI):
if
mode
==
'train'
:
if
mode
==
'train'
:
self
.
optimizer
.
minimize
(
model_out
)
self
.
optimizer
.
minimize
(
model_out
)
outputs
[
'loss'
]
=
model_out
outputs
[
'loss'
]
=
model_out
elif
mode
==
'eval'
:
outputs
[
'loss'
]
=
model_out
[
0
]
outputs
[
'pred'
]
=
model_out
[
1
]
outputs
[
'label'
]
=
model_out
[
2
]
outputs
[
'mask'
]
=
model_out
[
3
]
else
:
else
:
outputs
[
'pred'
]
=
model_out
[
0
]
outputs
[
'pred'
]
=
model_out
[
0
]
outputs
[
'logit'
]
=
model_out
[
1
]
outputs
[
'logit'
]
=
model_out
[
1
]
...
@@ -336,18 +331,26 @@ class DeepLabv3p(BaseAPI):
...
@@ -336,18 +331,26 @@ class DeepLabv3p(BaseAPI):
for
step
,
data
in
tqdm
.
tqdm
(
for
step
,
data
in
tqdm
.
tqdm
(
enumerate
(
data_generator
()),
total
=
total_steps
):
enumerate
(
data_generator
()),
total
=
total_steps
):
images
=
np
.
array
([
d
[
0
]
for
d
in
data
])
images
=
np
.
array
([
d
[
0
]
for
d
in
data
])
labels
=
np
.
array
([
d
[
1
]
for
d
in
data
])
_
,
_
,
im_h
,
im_w
=
images
.
shape
labels
=
list
()
for
d
in
data
:
padding_label
=
np
.
zeros
(
(
1
,
im_h
,
im_w
)).
astype
(
'int64'
)
+
self
.
ignore_index
padding_label
[:,
:
im_h
,
:
im_w
]
=
d
[
1
]
labels
.
append
(
padding_label
)
labels
=
np
.
array
(
labels
)
num_samples
=
images
.
shape
[
0
]
num_samples
=
images
.
shape
[
0
]
if
num_samples
<
batch_size
:
if
num_samples
<
batch_size
:
num_pad_samples
=
batch_size
-
num_samples
num_pad_samples
=
batch_size
-
num_samples
pad_images
=
np
.
tile
(
images
[
0
:
1
],
(
num_pad_samples
,
1
,
1
,
1
))
pad_images
=
np
.
tile
(
images
[
0
:
1
],
(
num_pad_samples
,
1
,
1
,
1
))
images
=
np
.
concatenate
([
images
,
pad_images
])
images
=
np
.
concatenate
([
images
,
pad_images
])
feed_data
=
{
'image'
:
images
}
feed_data
=
{
'image'
:
images
}
outputs
=
self
.
exe
.
run
(
outputs
=
self
.
exe
.
run
(
self
.
parallel_test_prog
,
self
.
parallel_test_prog
,
feed
=
feed_data
,
feed
=
feed_data
,
fetch_list
=
list
(
self
.
test_outputs
.
values
()),
fetch_list
=
list
(
self
.
test_outputs
.
values
()),
return_numpy
=
True
)
return_numpy
=
True
)
pred
=
outputs
[
0
]
pred
=
outputs
[
0
]
if
num_samples
<
batch_size
:
if
num_samples
<
batch_size
:
pred
=
pred
[
0
:
num_samples
]
pred
=
pred
[
0
:
num_samples
]
...
@@ -364,8 +367,7 @@ class DeepLabv3p(BaseAPI):
...
@@ -364,8 +367,7 @@ class DeepLabv3p(BaseAPI):
metrics
=
OrderedDict
(
metrics
=
OrderedDict
(
zip
([
'miou'
,
'category_iou'
,
'macc'
,
'category_acc'
,
'kappa'
],
zip
([
'miou'
,
'category_iou'
,
'macc'
,
'category_acc'
,
'kappa'
],
[
miou
,
category_iou
,
macc
,
category_acc
,
[
miou
,
category_iou
,
macc
,
category_acc
,
conf_mat
.
kappa
()]))
conf_mat
.
kappa
()]))
if
return_details
:
if
return_details
:
eval_details
=
{
eval_details
=
{
'confusion_matrix'
:
conf_mat
.
confusion_matrix
.
tolist
()
'confusion_matrix'
:
conf_mat
.
confusion_matrix
.
tolist
()
...
@@ -394,10 +396,9 @@ class DeepLabv3p(BaseAPI):
...
@@ -394,10 +396,9 @@ class DeepLabv3p(BaseAPI):
transforms
=
self
.
test_transforms
,
mode
=
'test'
)
transforms
=
self
.
test_transforms
,
mode
=
'test'
)
im
,
im_info
=
self
.
test_transforms
(
im_file
)
im
,
im_info
=
self
.
test_transforms
(
im_file
)
im
=
np
.
expand_dims
(
im
,
axis
=
0
)
im
=
np
.
expand_dims
(
im
,
axis
=
0
)
result
=
self
.
exe
.
run
(
result
=
self
.
exe
.
run
(
self
.
test_prog
,
self
.
test_prog
,
feed
=
{
'image'
:
im
},
feed
=
{
'image'
:
im
},
fetch_list
=
list
(
self
.
test_outputs
.
values
()))
fetch_list
=
list
(
self
.
test_outputs
.
values
()))
pred
=
result
[
0
]
pred
=
result
[
0
]
pred
=
np
.
squeeze
(
pred
).
astype
(
'uint8'
)
pred
=
np
.
squeeze
(
pred
).
astype
(
'uint8'
)
logit
=
result
[
1
]
logit
=
result
[
1
]
...
@@ -413,6 +414,6 @@ class DeepLabv3p(BaseAPI):
...
@@ -413,6 +414,6 @@ class DeepLabv3p(BaseAPI):
pred
=
pred
[
0
:
h
,
0
:
w
]
pred
=
pred
[
0
:
h
,
0
:
w
]
logit
=
logit
[
0
:
h
,
0
:
w
,
:]
logit
=
logit
[
0
:
h
,
0
:
w
,
:]
else
:
else
:
raise
Exception
(
"Unexpected info '{}' in im_info"
.
format
(
raise
Exception
(
"Unexpected info '{}' in im_info"
.
format
(
info
[
info
[
0
]))
0
]))
return
{
'label_map'
:
pred
,
'score_map'
:
logit
}
return
{
'label_map'
:
pred
,
'score_map'
:
logit
}
paddlex/cv/nets/segmentation/deeplabv3p.py
浏览文件 @
c2548389
...
@@ -135,7 +135,8 @@ class DeepLabv3p(object):
...
@@ -135,7 +135,8 @@ class DeepLabv3p(object):
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
name
=
name_scope
+
'weights'
,
name
=
name_scope
+
'weights'
,
regularizer
=
None
,
regularizer
=
None
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.06
))
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.06
))
with
scope
(
'encoder'
):
with
scope
(
'encoder'
):
channel
=
256
channel
=
256
with
scope
(
"image_pool"
):
with
scope
(
"image_pool"
):
...
@@ -151,8 +152,8 @@ class DeepLabv3p(object):
...
@@ -151,8 +152,8 @@ class DeepLabv3p(object):
padding
=
0
,
padding
=
0
,
param_attr
=
param_attr
))
param_attr
=
param_attr
))
input_shape
=
fluid
.
layers
.
shape
(
input
)
input_shape
=
fluid
.
layers
.
shape
(
input
)
image_avg
=
fluid
.
layers
.
resize_bilinear
(
image_avg
=
fluid
.
layers
.
resize_bilinear
(
image_avg
,
image_avg
,
input_shape
[
2
:])
input_shape
[
2
:])
with
scope
(
"aspp0"
):
with
scope
(
"aspp0"
):
aspp0
=
bn_relu
(
aspp0
=
bn_relu
(
...
@@ -244,7 +245,8 @@ class DeepLabv3p(object):
...
@@ -244,7 +245,8 @@ class DeepLabv3p(object):
param_attr
=
fluid
.
ParamAttr
(
param_attr
=
fluid
.
ParamAttr
(
name
=
name_scope
+
'weights'
,
name
=
name_scope
+
'weights'
,
regularizer
=
None
,
regularizer
=
None
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.06
))
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.06
))
with
scope
(
'decoder'
):
with
scope
(
'decoder'
):
with
scope
(
'concat'
):
with
scope
(
'concat'
):
decode_shortcut
=
bn_relu
(
decode_shortcut
=
bn_relu
(
...
@@ -326,9 +328,6 @@ class DeepLabv3p(object):
...
@@ -326,9 +328,6 @@ class DeepLabv3p(object):
if
self
.
mode
==
'train'
:
if
self
.
mode
==
'train'
:
inputs
[
'label'
]
=
fluid
.
data
(
inputs
[
'label'
]
=
fluid
.
data
(
dtype
=
'int32'
,
shape
=
[
None
,
1
,
None
,
None
],
name
=
'label'
)
dtype
=
'int32'
,
shape
=
[
None
,
1
,
None
,
None
],
name
=
'label'
)
elif
self
.
mode
==
'eval'
:
inputs
[
'label'
]
=
fluid
.
data
(
dtype
=
'int32'
,
shape
=
[
None
,
1
,
None
,
None
],
name
=
'label'
)
return
inputs
return
inputs
def
build_net
(
self
,
inputs
):
def
build_net
(
self
,
inputs
):
...
@@ -351,7 +350,8 @@ class DeepLabv3p(object):
...
@@ -351,7 +350,8 @@ class DeepLabv3p(object):
name
=
name_scope
+
'weights'
,
name
=
name_scope
+
'weights'
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
),
regularization_coeff
=
0.0
),
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.01
))
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.01
))
with
scope
(
'logit'
):
with
scope
(
'logit'
):
with
fluid
.
name_scope
(
'last_conv'
):
with
fluid
.
name_scope
(
'last_conv'
):
logit
=
conv
(
logit
=
conv
(
...
...
paddlex/cv/transforms/cls_transforms.py
浏览文件 @
c2548389
...
@@ -92,6 +92,12 @@ class Compose(ClsTransform):
...
@@ -92,6 +92,12 @@ class Compose(ClsTransform):
outputs
=
(
im
,
label
)
outputs
=
(
im
,
label
)
return
outputs
return
outputs
def
add_augmenters
(
self
,
augmenters
):
if
not
isinstance
(
augmenters
,
list
):
raise
Exception
(
"augmenters should be list type in func add_augmenters()"
)
self
.
transforms
=
augmenters
+
self
.
transforms
.
transforms
class
RandomCrop
(
ClsTransform
):
class
RandomCrop
(
ClsTransform
):
"""对图像进行随机剪裁,模型训练时的数据增强操作。
"""对图像进行随机剪裁,模型训练时的数据增强操作。
...
@@ -461,3 +467,56 @@ class ArrangeClassifier(ClsTransform):
...
@@ -461,3 +467,56 @@ class ArrangeClassifier(ClsTransform):
else
:
else
:
outputs
=
(
im
,
)
outputs
=
(
im
,
)
return
outputs
return
outputs
class
ComposedClsTransforms
(
Compose
):
""" 分类模型的基础Transforms流程,具体如下
训练阶段:
1. 随机从图像中crop一块子图,并resize成crop_size大小
2. 将1的输出按0.5的概率随机进行水平翻转
3. 将图像进行归一化
验证/预测阶段:
1. 将图像按比例Resize,使得最小边长度为crop_size[0] * 1.14
2. 从图像中心crop出一个大小为crop_size的图像
3. 将图像进行归一化
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
crop_size(int|list): 输入模型里的图像大小
mean(list): 图像均值
std(list): 图像方差
"""
def
__init__
(
self
,
mode
,
crop_size
=
[
224
,
224
],
mean
=
[
0.485
,
0.456
,
0.406
],
std
=
[
0.229
,
0.224
,
0.225
]):
width
=
crop_size
if
isinstance
(
crop_size
,
list
):
if
crop_size
[
0
]
!=
crop_size
[
1
]:
raise
Exception
(
"In classifier model, width and height should be equal, please modify your parameter `crop_size`"
)
width
=
crop_size
[
0
]
if
width
%
32
!=
0
:
raise
Exception
(
"In classifier model, width and height should be multiple of 32, e.g 224、256、320...., please modify your parameter `crop_size`"
)
if
mode
==
'train'
:
# 训练时的transforms,包含数据增强
transforms
=
[
RandomCrop
(
crop_size
=
width
),
RandomHorizontalFlip
(
prob
=
0.5
),
Normalize
(
mean
=
mean
,
std
=
std
)
]
else
:
# 验证/预测时的transforms
transforms
=
[
ResizeByShort
(
short_size
=
int
(
width
*
1.14
)),
CenterCrop
(
crop_size
=
width
),
Normalize
(
mean
=
mean
,
std
=
std
)
]
super
(
ComposedClsTransforms
,
self
).
__init__
(
transforms
)
paddlex/cv/transforms/det_transforms.py
浏览文件 @
c2548389
...
@@ -152,6 +152,12 @@ class Compose(DetTransform):
...
@@ -152,6 +152,12 @@ class Compose(DetTransform):
outputs
=
(
im
,
im_info
)
outputs
=
(
im
,
im_info
)
return
outputs
return
outputs
def
add_augmenters
(
self
,
augmenters
):
if
not
isinstance
(
augmenters
,
list
):
raise
Exception
(
"augmenters should be list type in func add_augmenters()"
)
self
.
transforms
=
augmenters
+
self
.
transforms
.
transforms
class
ResizeByShort
(
DetTransform
):
class
ResizeByShort
(
DetTransform
):
"""根据图像的短边调整图像大小(resize)。
"""根据图像的短边调整图像大小(resize)。
...
@@ -1227,3 +1233,108 @@ class ArrangeYOLOv3(DetTransform):
...
@@ -1227,3 +1233,108 @@ class ArrangeYOLOv3(DetTransform):
im_shape
=
im_info
[
'image_shape'
]
im_shape
=
im_info
[
'image_shape'
]
outputs
=
(
im
,
im_shape
)
outputs
=
(
im
,
im_shape
)
return
outputs
return
outputs
class
ComposedRCNNTransforms
(
Compose
):
""" RCNN模型(faster-rcnn/mask-rcnn)图像处理流程,具体如下,
训练阶段:
1. 随机以0.5的概率将图像水平翻转
2. 图像归一化
3. 图像按比例Resize,scale计算方式如下
scale = min_max_size[0] / short_size_of_image
if max_size_of_image * scale > min_max_size[1]:
scale = min_max_size[1] / max_size_of_image
4. 将3步骤的长宽进行padding,使得长宽为32的倍数
验证阶段:
1. 图像归一化
2. 图像按比例Resize,scale计算方式同上训练阶段
3. 将2步骤的长宽进行padding,使得长宽为32的倍数
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
min_max_size(list): 图像在缩放时,最小边和最大边的约束条件
mean(list): 图像均值
std(list): 图像方差
"""
def
__init__
(
self
,
mode
,
min_max_size
=
[
800
,
1333
],
mean
=
[
0.485
,
0.456
,
0.406
],
std
=
[
0.229
,
0.224
,
0.225
]):
if
mode
==
'train'
:
# 训练时的transforms,包含数据增强
transforms
=
[
RandomHorizontalFlip
(
prob
=
0.5
),
Normalize
(
mean
=
mean
,
std
=
std
),
ResizeByShort
(
short_size
=
min_max_size
[
0
],
max_size
=
min_max_size
[
1
]),
Padding
(
coarsest_stride
=
32
)
]
else
:
# 验证/预测时的transforms
transforms
=
[
Normalize
(
mean
=
mean
,
std
=
std
),
ResizeByShort
(
short_size
=
min_max_size
[
0
],
max_size
=
min_max_size
[
1
]),
Padding
(
coarsest_stride
=
32
)
]
super
(
ComposedRCNNTransforms
,
self
).
__init__
(
transforms
)
class
ComposedYOLOTransforms
(
Compose
):
"""YOLOv3模型的图像预处理流程,具体如下,
训练阶段:
1. 在前mixup_epoch轮迭代中,使用MixupImage策略,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#mixupimage
2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调
3. 随机扩充图像,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#randomexpand
4. 随机裁剪图像
5. 将4步骤的输出图像Resize成shape参数的大小
6. 随机0.5的概率水平翻转图像
7. 图像归一化
验证/预测阶段:
1. 将图像Resize成shape参数大小
2. 图像归一化
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
shape(list): 输入模型中图像的大小,输入模型的图像会被Resize成此大小
mixup_epoch(int): 模型训练过程中,前mixup_epoch会使用mixup策略
mean(list): 图像均值
std(list): 图像方差
"""
def
__init__
(
self
,
mode
,
shape
=
[
608
,
608
],
mixup_epoch
=
250
,
mean
=
[
0.485
,
0.456
,
0.406
],
std
=
[
0.229
,
0.224
,
0.225
]):
width
=
shape
if
isinstance
(
shape
,
list
):
if
shape
[
0
]
!=
shape
[
1
]:
raise
Exception
(
"In YOLOv3 model, width and height should be equal"
)
width
=
shape
[
0
]
if
width
%
32
!=
0
:
raise
Exception
(
"In YOLOv3 model, width and height should be multiple of 32, e.g 224、256、320...."
)
if
mode
==
'train'
:
# 训练时的transforms,包含数据增强
transforms
=
[
MixupImage
(
mixup_epoch
=
mixup_epoch
),
RandomDistort
(),
RandomExpand
(),
RandomCrop
(),
Resize
(
target_size
=
width
,
interp
=
'RANDOM'
),
RandomHorizontalFlip
(),
Normalize
(
mean
=
mean
,
std
=
std
)
]
else
:
# 验证/预测时的transforms
transforms
=
[
Resize
(
target_size
=
width
,
interp
=
'CUBIC'
),
Normalize
(
mean
=
mean
,
std
=
std
)
]
super
(
ComposedYOLOTransforms
,
self
).
__init__
(
transforms
)
paddlex/cv/transforms/seg_transforms.py
浏览文件 @
c2548389
...
@@ -108,6 +108,12 @@ class Compose(SegTransform):
...
@@ -108,6 +108,12 @@ class Compose(SegTransform):
outputs
=
(
im
,
im_info
)
outputs
=
(
im
,
im_info
)
return
outputs
return
outputs
def
add_augmenters
(
self
,
augmenters
):
if
not
isinstance
(
augmenters
,
list
):
raise
Exception
(
"augmenters should be list type in func add_augmenters()"
)
self
.
transforms
=
augmenters
+
self
.
transforms
.
transforms
class
RandomHorizontalFlip
(
SegTransform
):
class
RandomHorizontalFlip
(
SegTransform
):
"""以一定的概率对图像进行水平翻转。当存在标注图像时,则同步进行翻转。
"""以一定的概率对图像进行水平翻转。当存在标注图像时,则同步进行翻转。
...
@@ -1088,3 +1094,39 @@ class ArrangeSegmenter(SegTransform):
...
@@ -1088,3 +1094,39 @@ class ArrangeSegmenter(SegTransform):
return
(
im
,
im_info
)
return
(
im
,
im_info
)
else
:
else
:
return
(
im
,
)
return
(
im
,
)
class
ComposedSegTransforms
(
Compose
):
""" 语义分割模型(UNet/DeepLabv3p)的图像处理流程,具体如下
训练阶段:
1. 随机对图像以0.5的概率水平翻转
2. 按不同的比例随机Resize原图
3. 从原图中随机crop出大小为train_crop_size大小的子图,如若crop出来的图小于train_crop_size,则会将图padding到对应大小
4. 图像归一化
预测阶段:
1. 图像归一化
Args:
mode(str): 图像处理所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
train_crop_size(list): 模型训练阶段,随机从原图crop的大小
mean(list): 图像均值
std(list): 图像方差
"""
def
__init__
(
self
,
mode
,
train_crop_size
=
[
769
,
769
],
mean
=
[
0.5
,
0.5
,
0.5
],
std
=
[
0.5
,
0.5
,
0.5
]):
if
mode
==
'train'
:
# 训练时的transforms,包含数据增强
transforms
=
[
RandomHorizontalFlip
(
prob
=
0.5
),
ResizeStepScaling
(),
RandomPaddingCrop
(
crop_size
=
train_crop_size
),
Normalize
(
mean
=
mean
,
std
=
std
)
]
else
:
# 验证/预测时的transforms
transforms
=
[
Resize
(
512
),
Normalize
(
mean
=
mean
,
std
=
std
)]
super
(
ComposedSegTransforms
,
self
).
__init__
(
transforms
)
paddlex/deploy.py
浏览文件 @
c2548389
...
@@ -97,8 +97,6 @@ class Predictor:
...
@@ -97,8 +97,6 @@ class Predictor:
config
.
disable_glog_info
()
config
.
disable_glog_info
()
if
memory_optimize
:
if
memory_optimize
:
config
.
enable_memory_optim
()
config
.
enable_memory_optim
()
else
:
config
.
diable_memory_optim
()
# 开启计算图分析优化,包括OP融合等
# 开启计算图分析优化,包括OP融合等
config
.
switch_ir_optim
(
True
)
config
.
switch_ir_optim
(
True
)
...
...
setup.py
浏览文件 @
c2548389
...
@@ -19,7 +19,7 @@ long_description = "PaddleX. A end-to-end deeplearning model development toolkit
...
@@ -19,7 +19,7 @@ long_description = "PaddleX. A end-to-end deeplearning model development toolkit
setuptools
.
setup
(
setuptools
.
setup
(
name
=
"paddlex"
,
name
=
"paddlex"
,
version
=
'1.0.
2
'
,
version
=
'1.0.
4
'
,
author
=
"paddlex"
,
author
=
"paddlex"
,
author_email
=
"paddlex@baidu.com"
,
author_email
=
"paddlex@baidu.com"
,
description
=
long_description
,
description
=
long_description
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录