未验证 提交 bc8745f8 编写于 作者: J Jason 提交者: GitHub

Merge pull request #69 from PaddlePaddle/devleop_deploy

add deploy code
...@@ -30,6 +30,7 @@ from . import slim ...@@ -30,6 +30,7 @@ from . import slim
from . import convertor from . import convertor
from . import tools from . import tools
from . import interpret from . import interpret
from . import deploy
try: try:
import pycocotools import pycocotools
...@@ -41,9 +42,9 @@ except: ...@@ -41,9 +42,9 @@ except:
"[WARNING] pycocotools install: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/install.md" "[WARNING] pycocotools install: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/install.md"
) )
#import paddlehub as hub import paddlehub as hub
#if hub.version.hub_version < '1.6.2': if hub.version.hub_version < '1.6.2':
# raise Exception("[ERROR] paddlehub >= 1.6.2 is required") raise Exception("[ERROR] paddlehub >= 1.6.2 is required")
env_info = get_environ_info() env_info = get_environ_info()
load_model = cv.models.load_model load_model = cv.models.load_model
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import os.path as osp
import cv2
import numpy as np
import yaml
import paddlex
import paddle.fluid as fluid
class Predictor:
def __init__(self,
model_dir,
use_gpu=True,
gpu_id=0,
use_mkl=False,
use_trt=False,
use_glog=False,
memory_optimize=True):
""" 创建Paddle Predictor
Args:
model_dir: 模型路径(必须是导出的部署或量化模型)
use_gpu: 是否使用gpu,默认True
gpu_id: 使用gpu的id,默认0
use_mkl: 是否使用mkldnn计算库,CPU情况下使用,默认False
use_trt: 是否使用TensorRT,默认False
use_glog: 是否启用glog日志, 默认False
memory_optimize: 是否启动内存优化,默认True
"""
if not osp.isdir(model_dir):
raise Exception("[ERROR] Path {} not exist.".format(model_dir))
if not osp.exists(osp.join(model_dir, "model.yml")):
raise Exception("There's not model.yml in {}".format(model_dir))
with open(osp.join(model_dir, "model.yml")) as f:
self.info = yaml.load(f.read(), Loader=yaml.Loader)
self.status = self.info['status']
if self.status != "Quant" and self.status != "Infer":
raise Exception("[ERROR] Only quantized model or exported "
"inference model is supported.")
self.model_dir = model_dir
self.model_type = self.info['_Attributes']['model_type']
self.model_name = self.info['Model']
self.num_classes = self.info['_Attributes']['num_classes']
self.labels = self.info['_Attributes']['labels']
if self.info['Model'] == 'MaskRCNN':
if self.info['_init_params']['with_fpn']:
self.mask_head_resolution = 28
else:
self.mask_head_resolution = 14
transforms_mode = self.info.get('TransformsMode', 'RGB')
if transforms_mode == 'RGB':
to_rgb = True
else:
to_rgb = False
self.transforms = self.build_transforms(self.info['Transforms'],
to_rgb)
self.predictor = self.create_predictor(
use_gpu, gpu_id, use_mkl, use_trt, use_glog, memory_optimize)
def create_predictor(self,
use_gpu=True,
gpu_id=0,
use_mkl=False,
use_trt=False,
use_glog=False,
memory_optimize=True):
config = fluid.core.AnalysisConfig(
os.path.join(self.model_dir, '__model__'),
os.path.join(self.model_dir, '__params__'))
if use_gpu:
# 设置GPU初始显存(单位M)和Device ID
config.enable_use_gpu(100, gpu_id)
else:
config.disable_gpu()
if use_mkl:
config.enable_mkldnn()
if use_glog:
config.enable_glog_info()
else:
config.disable_glog_info()
if memory_optimize:
config.enable_memory_optim()
else:
config.diable_memory_optim()
# 开启计算图分析优化,包括OP融合等
config.switch_ir_optim(True)
# 关闭feed和fetch OP使用,使用ZeroCopy接口必须设置此项
config.switch_use_feed_fetch_ops(False)
predictor = fluid.core.create_paddle_predictor(config)
return predictor
def build_transforms(self, transforms_info, to_rgb=True):
if self.model_type == "classifier":
from paddlex.cls import transforms
elif self.model_type == "detector":
from paddlex.det import transforms
elif self.model_type == "segmenter":
from paddlex.seg import transforms
op_list = list()
for op_info in transforms_info:
op_name = list(op_info.keys())[0]
op_attr = op_info[op_name]
if not hasattr(transforms, op_name):
raise Exception(
"There's no operator named '{}' in transforms of {}".
format(op_name, self.model_type))
op_list.append(getattr(transforms, op_name)(**op_attr))
eval_transforms = transforms.Compose(op_list)
if hasattr(eval_transforms, 'to_rgb'):
eval_transforms.to_rgb = to_rgb
self.arrange_transforms(eval_transforms)
return eval_transforms
def arrange_transforms(self, transforms):
if self.model_type == 'classifier':
arrange_transform = paddlex.cls.transforms.ArrangeClassifier
elif self.model_type == 'segmenter':
arrange_transform = paddlex.seg.transforms.ArrangeSegmenter
elif self.model_type == 'detector':
arrange_name = 'Arrange{}'.format(self.model_name)
arrange_transform = getattr(paddlex.det.transforms, arrange_name)
else:
raise Exception("Unrecognized model type: {}".format(
self.model_type))
if type(transforms.transforms[-1]).__name__.startswith('Arrange'):
transforms.transforms[-1] = arrange_transform(mode='test')
else:
transforms.transforms.append(arrange_transform(mode='test'))
def preprocess(self, image):
""" 对图像做预处理
Args:
image(str|np.ndarray): 图片路径或np.ndarray,如为后者,要求是BGR格式
"""
res = dict()
if self.model_type == "classifier":
im, = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
res['image'] = im
elif self.model_type == "detector":
if self.model_name == "YOLOv3":
im, im_shape = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
im_shape = np.expand_dims(im_shape, axis=0).copy()
res['image'] = im
res['im_size'] = im_shape
if self.model_name.count('RCNN') > 0:
im, im_resize_info, im_shape = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
im_resize_info = np.expand_dims(im_resize_info, axis=0).copy()
im_shape = np.expand_dims(im_shape, axis=0).copy()
res['image'] = im
res['im_info'] = im_resize_info
res['im_shape'] = im_shape
elif self.model_type == "segmenter":
im, im_info = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
res['image'] = im
res['im_info'] = im_info
return res
def raw_predict(self, inputs):
""" 接受预处理过后的数据进行预测
Args:
inputs(tuple): 预处理过后的数据
"""
for k, v in inputs.items():
try:
tensor = self.predictor.get_input_tensor(k)
except:
continue
tensor.copy_from_cpu(v)
self.predictor.zero_copy_run()
output_names = self.predictor.get_output_names()
output_results = list()
for name in output_names:
output_tensor = self.predictor.get_output_tensor(name)
output_results.append(output_tensor.copy_to_cpu())
return output_results
def classifier_postprocess(self, preds, topk=1):
""" 对分类模型的预测结果做后处理
"""
true_topk = min(self.num_classes, topk)
pred_label = np.argsort(preds[0][0])[::-1][:true_topk]
result = [{
'category_id': l,
'category': self.labels[l],
'score': preds[0][0, l],
} for l in pred_label]
return result
def segmenter_postprocess(self, preds, preprocessed_inputs):
""" 对语义分割结果做后处理
"""
label_map = np.squeeze(preds[0]).astype('uint8')
score_map = np.squeeze(preds[1])
score_map = np.transpose(score_map, (1, 2, 0))
im_info = preprocessed_inputs['im_info']
for info in im_info[::-1]:
if info[0] == 'resize':
w, h = info[1][1], info[1][0]
label_map = cv2.resize(label_map, (w, h), cv2.INTER_NEAREST)
score_map = cv2.resize(score_map, (w, h), cv2.INTER_LINEAR)
elif info[0] == 'padding':
w, h = info[1][1], info[1][0]
label_map = label_map[0:h, 0:w]
score_map = score_map[0:h, 0:w, :]
else:
raise Exception("Unexpected info '{}' in im_info".format(info[
0]))
return {'label_map': label_map, 'score_map': score_map}
def detector_postprocess(self, preds, preprocessed_inputs):
""" 对目标检测和实例分割结果做后处理
"""
bboxes = {'bbox': (np.array(preds[0]), [[len(preds[0])]])}
bboxes['im_id'] = (np.array([[0]]).astype('int32'), [])
clsid2catid = dict({i: i for i in range(self.num_classes)})
xywh_results = paddlex.cv.models.utils.detection_eval.bbox2out(
[bboxes], clsid2catid)
results = list()
for xywh_res in xywh_results:
del xywh_res['image_id']
xywh_res['category'] = self.labels[xywh_res['category_id']]
results.append(xywh_res)
if len(preds) > 1:
im_shape = preprocessed_inputs['im_shape']
bboxes['im_shape'] = (im_shape, [])
bboxes['mask'] = (np.array(preds[1]), [[len(preds[1])]])
segm_results = paddlex.cv.models.utils.detection_eval.mask2out(
[bboxes], clsid2catid, self.mask_head_resolution)
import pycocotools.mask as mask_util
for i in range(len(results)):
results[i]['mask'] = mask_util.decode(segm_results[i][
'segmentation'])
return results
def predict(self, image, topk=1, threshold=0.5):
""" 图片预测
Args:
image(str|np.ndarray): 图片路径或np.ndarray格式,如果后者,要求为BGR输入格式
topk(int): 分类预测时使用,表示预测前topk的结果
"""
preprocessed_input = self.preprocess(image)
model_pred = self.raw_predict(preprocessed_input)
if self.model_type == "classifier":
results = self.classifier_postprocess(model_pred, topk)
elif self.model_type == "detector":
results = self.detector_postprocess(model_pred, preprocessed_input)
elif self.model_type == "segmenter":
results = self.segmenter_postprocess(model_pred,
preprocessed_input)
return results
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
...@@ -30,7 +30,7 @@ setuptools.setup( ...@@ -30,7 +30,7 @@ setuptools.setup(
setup_requires=['cython', 'numpy'], setup_requires=['cython', 'numpy'],
install_requires=[ install_requires=[
"pycocotools;platform_system!='Windows'", 'pyyaml', 'colorama', 'tqdm', "pycocotools;platform_system!='Windows'", 'pyyaml', 'colorama', 'tqdm',
'paddleslim==1.0.1', 'visualdl==2.0.0a2' 'paddleslim==1.0.1', 'visualdl>=2.0.0a2'
], ],
classifiers=[ classifiers=[
"Programming Language :: Python :: 3", "Programming Language :: Python :: 3",
......
...@@ -4,44 +4,38 @@ os.environ['CUDA_VISIBLE_DEVICES'] = '0' ...@@ -4,44 +4,38 @@ os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import os.path as osp import os.path as osp
import paddlex as pdx import paddlex as pdx
from paddlex.cls import transforms
# 下载和解压Imagenet果蔬分类数据集 # 下载和解压Imagenet果蔬分类数据集
veg_dataset = 'https://bj.bcebos.com/paddlex/interpret/mini_imagenet_veg.tar.gz' veg_dataset = 'https://bj.bcebos.com/paddlex/interpret/mini_imagenet_veg.tar.gz'
pdx.utils.download_and_decompress(veg_dataset, path='./') pdx.utils.download_and_decompress(veg_dataset, path='./')
# 定义测试集的transform # 下载和解压已训练好的MobileNetV2模型
test_transforms = transforms.Compose([ model_file = 'https://bj.bcebos.com/paddlex/interpret/mini_imagenet_veg_mobilenetv2.tar.gz'
transforms.ResizeByShort(short_size=256), pdx.utils.download_and_decompress(model_file, path='./')
transforms.CenterCrop(crop_size=224),
transforms.Normalize() # 加载模型
]) model = pdx.load_model('mini_imagenet_veg_mobilenetv2')
# 定义测试所用的数据集 # 定义测试所用的数据集
test_dataset = pdx.datasets.ImageNet( test_dataset = pdx.datasets.ImageNet(
data_dir='mini_imagenet_veg', data_dir='mini_imagenet_veg',
file_list=osp.join('mini_imagenet_veg', 'test_list.txt'), file_list=osp.join('mini_imagenet_veg', 'test_list.txt'),
label_list=osp.join('mini_imagenet_veg', 'labels.txt'), label_list=osp.join('mini_imagenet_veg', 'labels.txt'),
transforms=test_transforms) transforms=model.test_transforms)
# 下载和解压已训练好的MobileNetV2模型
model_file = 'https://bj.bcebos.com/paddlex/interpret/mini_imagenet_veg_mobilenetv2.tar.gz'
pdx.utils.download_and_decompress(model_file, path='./')
# 导入模型
model = pdx.load_model('mini_imagenet_veg_mobilenetv2')
# 可解释性可视化 # 可解释性可视化
save_dir = 'interpret_results' # LIME算法
if not osp.exists(save_dir): pdx.interpret.visualize(
os.makedirs(save_dir) 'mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
pdx.interpret.visualize('mini_imagenet_veg/mushroom/n07734744_1106.JPEG', model,
model, test_dataset,
test_dataset, algo='lime',
algo='lime', save_dir='./')
save_dir=save_dir)
pdx.interpret.visualize('mini_imagenet_veg/mushroom/n07734744_1106.JPEG', # NormLIME算法
model, pdx.interpret.visualize(
test_dataset, 'mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
algo='normlime', model,
save_dir=save_dir) test_dataset,
\ No newline at end of file algo='normlime',
save_dir='./')
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册