提交 a532ecc2 编写于 作者: J jiangjiajun

add deploy code

上级 8ed6cefd
......@@ -30,6 +30,7 @@ from . import slim
from . import convertor
from . import tools
from . import interpret
from . import deploy
try:
import pycocotools
......@@ -41,9 +42,9 @@ except:
"[WARNING] pycocotools install: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/install.md"
)
#import paddlehub as hub
#if hub.version.hub_version < '1.6.2':
# raise Exception("[ERROR] paddlehub >= 1.6.2 is required")
import paddlehub as hub
if hub.version.hub_version < '1.6.2':
raise Exception("[ERROR] paddlehub >= 1.6.2 is required")
env_info = get_environ_info()
load_model = cv.models.load_model
......
......@@ -79,9 +79,9 @@ class BaseAPI:
return int(batch_size // len(self.places))
else:
raise Exception("Please support correct batch_size, \
which can be divided by available cards({}) in {}".
format(paddlex.env_info['num'],
paddlex.env_info['place']))
which can be divided by available cards({}) in {}"
.format(paddlex.env_info['num'], paddlex.env_info[
'place']))
def build_program(self):
# 构建训练网络
......@@ -141,7 +141,7 @@ class BaseAPI:
from .slim.post_quantization import PaddleXPostTrainingQuantization
except:
raise Exception(
"Model Quantization is not available, try to upgrade your paddlepaddle>=1.7.0"
"Model Quantization is not available, try to upgrade your paddlepaddle>=1.8.0"
)
is_use_cache_file = True
if cache_dir is None:
......@@ -209,8 +209,8 @@ class BaseAPI:
paddlex.utils.utils.load_pretrain_weights(
self.exe, self.train_prog, resume_checkpoint, resume=True)
if not osp.exists(osp.join(resume_checkpoint, "model.yml")):
raise Exception(
"There's not model.yml in {}".format(resume_checkpoint))
raise Exception("There's not model.yml in {}".format(
resume_checkpoint))
with open(osp.join(resume_checkpoint, "model.yml")) as f:
info = yaml.load(f.read(), Loader=yaml.Loader)
self.completed_epochs = info['completed_epochs']
......@@ -361,8 +361,8 @@ class BaseAPI:
# 模型保存成功的标志
open(osp.join(save_dir, '.success'), 'w').close()
logging.info(
"Model for inference deploy saved in {}.".format(save_dir))
logging.info("Model for inference deploy saved in {}.".format(
save_dir))
def train_loop(self,
num_epochs,
......@@ -376,7 +376,8 @@ class BaseAPI:
early_stop=False,
early_stop_patience=5):
if train_dataset.num_samples < train_batch_size:
raise Exception('The amount of training datset must be larger than batch size.')
raise Exception(
'The amount of training datset must be larger than batch size.')
if not osp.isdir(save_dir):
if osp.exists(save_dir):
os.remove(save_dir)
......@@ -414,8 +415,8 @@ class BaseAPI:
build_strategy=build_strategy,
exec_strategy=exec_strategy)
total_num_steps = math.floor(
train_dataset.num_samples / train_batch_size)
total_num_steps = math.floor(train_dataset.num_samples /
train_batch_size)
num_steps = 0
time_stat = list()
time_train_one_epoch = None
......@@ -429,8 +430,8 @@ class BaseAPI:
if self.model_type == 'detector':
eval_batch_size = self._get_single_card_bs(train_batch_size)
if eval_dataset is not None:
total_num_steps_eval = math.ceil(
eval_dataset.num_samples / eval_batch_size)
total_num_steps_eval = math.ceil(eval_dataset.num_samples /
eval_batch_size)
if use_vdl:
# VisualDL component
......@@ -472,7 +473,9 @@ class BaseAPI:
if use_vdl:
for k, v in step_metrics.items():
log_writer.add_scalar('Metrics/Training(Step): {}'.format(k), v, num_steps)
log_writer.add_scalar(
'Metrics/Training(Step): {}'.format(k), v,
num_steps)
# 估算剩余时间
avg_step_time = np.mean(time_stat)
......@@ -480,11 +483,12 @@ class BaseAPI:
eta = (num_epochs - i - 1) * time_train_one_epoch + (
total_num_steps - step - 1) * avg_step_time
else:
eta = ((num_epochs - i) * total_num_steps - step -
1) * avg_step_time
eta = ((num_epochs - i) * total_num_steps - step - 1
) * avg_step_time
if time_eval_one_epoch is not None:
eval_eta = (total_eval_times - i //
save_interval_epochs) * time_eval_one_epoch
eval_eta = (
total_eval_times - i // save_interval_epochs
) * time_eval_one_epoch
else:
eval_eta = (
total_eval_times - i // save_interval_epochs
......@@ -494,10 +498,11 @@ class BaseAPI:
logging.info(
"[TRAIN] Epoch={}/{}, Step={}/{}, {}, time_each_step={}s, eta={}"
.format(i + 1, num_epochs, step + 1, total_num_steps,
dict2str(step_metrics), round(
avg_step_time, 2), eta_str))
dict2str(step_metrics),
round(avg_step_time, 2), eta_str))
train_metrics = OrderedDict(
zip(list(self.train_outputs.keys()), np.mean(records, axis=0)))
zip(list(self.train_outputs.keys()), np.mean(
records, axis=0)))
logging.info('[TRAIN] Epoch {} finished, {} .'.format(
i + 1, dict2str(train_metrics)))
time_train_one_epoch = time.time() - epoch_start_time
......@@ -533,7 +538,8 @@ class BaseAPI:
if isinstance(v, np.ndarray):
if v.size > 1:
continue
log_writer.add_scalar("Metrics/Eval(Epoch): {}".format(k), v, i+1)
log_writer.add_scalar(
"Metrics/Eval(Epoch): {}".format(k), v, i + 1)
self.save_model(save_dir=current_save_dir)
time_eval_one_epoch = time.time() - eval_epoch_start_time
eval_epoch_start_time = time.time()
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import os.path as osp
import cv2
import numpy as np
import yaml
import paddlex
import paddle.fluid as fluid
class Predictor:
def __init__(self,
model_dir,
use_gpu=True,
gpu_id=0,
use_mkl=False,
use_trt=False,
use_glog=False,
memory_optimize=True):
""" 创建Paddle Predictor
Args:
model_dir: 模型路径(必须是导出的部署或量化模型)
use_gpu: 是否使用gpu,默认True
gpu_id: 使用gpu的id,默认0
use_mkl: 是否使用mkldnn计算库,CPU情况下使用,默认False
use_trt: 是否使用TensorRT,默认False
use_glog: 是否启用glog日志, 默认False
memory_optimize: 是否启动内存优化,默认True
"""
if not osp.isdir(model_dir):
raise Exception("[ERROR] Path {} not exist.".format(model_dir))
if not osp.exists(osp.join(model_dir, "model.yml")):
raise Exception("There's not model.yml in {}".format(model_dir))
with open(osp.join(model_dir, "model.yml")) as f:
self.info = yaml.load(f.read(), Loader=yaml.Loader)
self.status = self.info['status']
if self.status != "Quant" and self.status != "Infer":
raise Exception("[ERROR] Only quantized model or exported "
"inference model is supported.")
self.model_dir = model_dir
self.model_type = self.info['_Attributes']['model_type']
self.model_name = self.info['Model']
self.num_classes = self.info['_Attributes']['num_classes']
self.labels = self.info['_Attributes']['labels']
if self.info['Model'] == 'MaskRCNN':
if self.info['_init_params']['with_fpn']:
self.mask_head_resolution = 28
else:
self.mask_head_resolution = 14
transforms_mode = self.info.get('TransformsMode', 'RGB')
if transforms_mode == 'RGB':
to_rgb = True
else:
to_rgb = False
self.transforms = self.build_transforms(self.info['Transforms'],
to_rgb)
self.predictor = self.create_predictor(
use_gpu, gpu_id, use_mkl, use_trt, use_glog, memory_optimize)
def create_predictor(self,
use_gpu=True,
gpu_id=0,
use_mkl=False,
use_trt=False,
use_glog=False,
memory_optimize=True):
config = fluid.core.AnalysisConfig(
os.path.join(self.model_dir, '__model__'),
os.path.join(self.model_dir, '__params__'))
if use_gpu:
# 设置GPU初始显存(单位M)和Device ID
config.enable_use_gpu(100, gpu_id)
else:
config.disable_gpu()
if use_mkl:
config.enable_mkldnn()
if use_glog:
config.enable_glog_info()
else:
config.disable_glog_info()
if memory_optimize:
config.enable_memory_optim()
else:
config.diable_memory_optim()
# 开启计算图分析优化,包括OP融合等
config.switch_ir_optim(True)
# 关闭feed和fetch OP使用,使用ZeroCopy接口必须设置此项
config.switch_use_feed_fetch_ops(False)
predictor = fluid.core.create_paddle_predictor(config)
return predictor
def build_transforms(self, transforms_info, to_rgb=True):
if self.model_type == "classifier":
from paddlex.cls import transforms
elif self.model_type == "detector":
from paddlex.det import transforms
elif self.model_type == "segmenter":
from paddlex.seg import transforms
op_list = list()
for op_info in transforms_info:
op_name = list(op_info.keys())[0]
op_attr = op_info[op_name]
if not hasattr(transforms, op_name):
raise Exception(
"There's no operator named '{}' in transforms of {}".
format(op_name, self.model_type))
op_list.append(getattr(transforms, op_name)(**op_attr))
eval_transforms = transforms.Compose(op_list)
if hasattr(eval_transforms, 'to_rgb'):
eval_transforms.to_rgb = to_rgb
self.arrange_transforms(eval_transforms)
return eval_transforms
def arrange_transforms(self, transforms):
if self.model_type == 'classifier':
arrange_transform = paddlex.cls.transforms.ArrangeClassifier
elif self.model_type == 'segmenter':
arrange_transform = paddlex.seg.transforms.ArrangeSegmenter
elif self.model_type == 'detector':
arrange_name = 'Arrange{}'.format(self.model_name)
arrange_transform = getattr(paddlex.det.transforms, arrange_name)
else:
raise Exception("Unrecognized model type: {}".format(
self.model_type))
if type(transforms.transforms[-1]).__name__.startswith('Arrange'):
transforms.transforms[-1] = arrange_transform(mode='test')
else:
transforms.transforms.append(arrange_transform(mode='test'))
def preprocess(self, image):
""" 对图像做预处理
Args:
image(str|np.ndarray): 图片路径或np.ndarray,如为后者,要求是BGR格式
"""
res = dict()
if self.model_type == "classifier":
im, = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
res['image'] = im
elif self.model_type == "detector":
if self.model_name == "YOLOv3":
im, im_shape = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
im_shape = np.expand_dims(im_shape, axis=0).copy()
res['image'] = im
res['im_size'] = im_shape
if self.model_name.count('RCNN') > 0:
im, im_resize_info, im_shape = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
im_resize_info = np.expand_dims(im_resize_info, axis=0).copy()
im_shape = np.expand_dims(im_shape, axis=0).copy()
res['image'] = im
res['im_info'] = im_resize_info
res['im_shape'] = im_shape
elif self.model_type == "segmenter":
im, im_info = self.transforms(image)
im = np.expand_dims(im, axis=0).copy()
res['image'] = im
res['im_info'] = im_info
return res
def raw_predict(self, inputs):
""" 接受预处理过后的数据进行预测
Args:
inputs(tuple): 预处理过后的数据
"""
for k, v in inputs.items():
try:
tensor = self.predictor.get_input_tensor(k)
except:
continue
tensor.copy_from_cpu(v)
self.predictor.zero_copy_run()
output_names = self.predictor.get_output_names()
output_results = list()
for name in output_names:
output_tensor = self.predictor.get_output_tensor(name)
output_results.append(output_tensor.copy_to_cpu())
return output_results
def classifier_postprocess(self, preds, topk=1):
""" 对分类模型的预测结果做后处理
"""
true_topk = min(self.num_classes, topk)
pred_label = np.argsort(preds[0][0])[::-1][:true_topk]
result = [{
'category_id': l,
'category': self.labels[l],
'score': preds[0][0, l],
} for l in pred_label]
return result
def segmenter_postprocess(self, preds, preprocessed_inputs):
""" 对语义分割结果做后处理
"""
label_map = np.squeeze(preds[0]).astype('uint8')
score_map = np.squeeze(preds[1])
score_map = np.transpose(score_map, (1, 2, 0))
im_info = preprocessed_inputs['im_info']
for info in im_info[::-1]:
if info[0] == 'resize':
w, h = info[1][1], info[1][0]
label_map = cv2.resize(label_map, (w, h), cv2.INTER_NEAREST)
score_map = cv2.resize(score_map, (w, h), cv2.INTER_LINEAR)
elif info[0] == 'padding':
w, h = info[1][1], info[1][0]
label_map = label_map[0:h, 0:w]
score_map = score_map[0:h, 0:w, :]
else:
raise Exception("Unexpected info '{}' in im_info".format(info[
0]))
return {'label_map': label_map, 'score_map': score_map}
def detector_postprocess(self, preds, preprocessed_inputs):
""" 对目标检测和实例分割结果做后处理
"""
bboxes = {'bbox': (np.array(preds[0]), [[len(preds[0])]])}
bboxes['im_id'] = (np.array([[0]]).astype('int32'), [])
clsid2catid = dict({i: i for i in range(self.num_classes)})
xywh_results = paddlex.cv.models.utils.detection_eval.bbox2out(
[bboxes], clsid2catid)
results = list()
for xywh_res in xywh_results:
del xywh_res['image_id']
xywh_res['category'] = self.labels[xywh_res['category_id']]
results.append(xywh_res)
if len(preds) > 1:
im_shape = preprocessed_inputs['im_shape']
bboxes['im_shape'] = (im_shape, [])
bboxes['mask'] = (np.array(preds[1]), [[len(preds[1])]])
segm_results = paddlex.cv.models.utils.detection_eval.mask2out(
[bboxes], clsid2catid, self.mask_head_resolution)
import pycocotools.mask as mask_util
for i in range(len(results)):
results[i]['mask'] = mask_util.decode(segm_results[i][
'segmentation'])
return results
def predict(self, image, topk=1, threshold=0.5):
""" 图片预测
Args:
image(str|np.ndarray): 图片路径或np.ndarray格式,如果后者,要求为BGR输入格式
topk(int): 分类预测时使用,表示预测前topk的结果
"""
preprocessed_input = self.preprocess(image)
model_pred = self.raw_predict(preprocessed_input)
if self.model_type == "classifier":
results = self.classifier_postprocess(model_pred, topk)
elif self.model_type == "detector":
results = self.detector_postprocess(model_pred, preprocessed_input)
elif self.model_type == "segmenter":
results = self.segmenter_postprocess(model_pred,
preprocessed_input)
return results
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
......@@ -30,7 +30,7 @@ setuptools.setup(
setup_requires=['cython', 'numpy'],
install_requires=[
"pycocotools;platform_system!='Windows'", 'pyyaml', 'colorama', 'tqdm',
'paddleslim==1.0.1', 'visualdl==2.0.0a2'
'paddleslim==1.0.1', 'visualdl>=2.0.0a2'
],
classifiers=[
"Programming Language :: Python :: 3",
......
......@@ -4,44 +4,38 @@ os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import os.path as osp
import paddlex as pdx
from paddlex.cls import transforms
# 下载和解压Imagenet果蔬分类数据集
veg_dataset = 'https://bj.bcebos.com/paddlex/interpret/mini_imagenet_veg.tar.gz'
pdx.utils.download_and_decompress(veg_dataset, path='./')
# 定义测试集的transform
test_transforms = transforms.Compose([
transforms.ResizeByShort(short_size=256),
transforms.CenterCrop(crop_size=224),
transforms.Normalize()
])
# 下载和解压已训练好的MobileNetV2模型
model_file = 'https://bj.bcebos.com/paddlex/interpret/mini_imagenet_veg_mobilenetv2.tar.gz'
pdx.utils.download_and_decompress(model_file, path='./')
# 加载模型
model = pdx.load_model('mini_imagenet_veg_mobilenetv2')
# 定义测试所用的数据集
test_dataset = pdx.datasets.ImageNet(
data_dir='mini_imagenet_veg',
file_list=osp.join('mini_imagenet_veg', 'test_list.txt'),
label_list=osp.join('mini_imagenet_veg', 'labels.txt'),
transforms=test_transforms)
# 下载和解压已训练好的MobileNetV2模型
model_file = 'https://bj.bcebos.com/paddlex/interpret/mini_imagenet_veg_mobilenetv2.tar.gz'
pdx.utils.download_and_decompress(model_file, path='./')
# 导入模型
model = pdx.load_model('mini_imagenet_veg_mobilenetv2')
transforms=model.test_transforms)
# 可解释性可视化
save_dir = 'interpret_results'
if not osp.exists(save_dir):
os.makedirs(save_dir)
pdx.interpret.visualize('mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
model,
test_dataset,
algo='lime',
save_dir=save_dir)
pdx.interpret.visualize('mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
model,
test_dataset,
algo='normlime',
save_dir=save_dir)
\ No newline at end of file
# LIME算法
pdx.interpret.visualize(
'mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
model,
test_dataset,
algo='lime',
save_dir='./')
# NormLIME算法
pdx.interpret.visualize(
'mini_imagenet_veg/mushroom/n07734744_1106.JPEG',
model,
test_dataset,
algo='normlime',
save_dir='./')
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册