提交 a37009fd 编写于 作者: F FlyingQianMM

reset some details

上级 50216bdb
......@@ -7,7 +7,6 @@ if [ ! -d "./paddlex-encryption" ]; then
fi
# download pre-compiled opencv lib
#OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2
OPENCV_URL=https://bj.bcebos.com/paddleseg/deploy/opencv3.4.6gcc4.8ffmpeg.tar.gz2
if [ ! -d "./deps/opencv3.4.6gcc4.8ffmpeg/" ]; then
mkdir -p deps
......
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU=ON
WITH_GPU=OFF
# 使用MKL or openblas
WITH_MKL=ON
# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
......@@ -7,15 +7,14 @@ WITH_TENSORRT=OFF
# TensorRT 的路径,如果需要集成TensorRT,需修改为您实际安装的TensorRT路径
TENSORRT_DIR=/root/projects/TensorRT/
# Paddle 预测库路径, 请修改为您实际安装的预测库路径
#PADDLE_DIR=/rrpn/my/qh_PaddleX/PaddleX/deploy/cpp/fluid_inference
PADDLE_DIR=/rrpn/my/PaddleX/deploy/cpp/fluid_inference
PADDLE_DIR=/root/projects/fluid_inference
# Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB=OFF
# CUDA 的 lib 路径
CUDA_LIB=/usr/local/cuda/lib64
# CUDNN 的 lib 路径
CUDNN_LIB=/usr/lib/x86_64-linux-gnu/
CUDNN_LIB=/usr/local/cuda/lib64
# 是否加载加密后的模型
WITH_ENCRYPTION=ON
......@@ -43,4 +42,4 @@ cmake .. \
-DCUDNN_LIB=${CUDNN_LIB} \
-DENCRYPTION_DIR=${ENCRYPTION_DIR} \
-DOPENCV_DIR=${OPENCV_DIR}
make
make -j16
# Nvidia Jetson开发板
## 说明
本文档在 `Linux`平台使用`GCC 7.4`测试过,如果需要使用更高G++版本编译使用,则需要重新编译Paddle预测库,请参考: [Nvidia Jetson嵌入式硬件预测库源码编译](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)
本文档在用Jetpack 4.4刷机的`Linux`平台上使用`GCC 7.4`测试过,如果需要使用更高G++版本编译使用,则需要重新编译Paddle预测库,请参考: [Nvidia Jetson嵌入式硬件预测库源码编译](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)
## 前置条件
* G++ 7.4
......@@ -57,13 +57,6 @@ CUDA_LIB=/usr/local/cuda/lib64
# CUDNN 的 lib 路径
CUDNN_LIB=/usr/local/cuda/lib64
# 是否加载加密后的模型
WITH_ENCRYPTION=OFF
# OPENCV 路径, 如果使用自带预编译版本可不修改
sh $(pwd)/scripts/jetson_bootstrap.sh # 下载预编译版本的opencv
OPENCV_DIR=$(pwd)/deps/opencv3/
# 以下无需改动
rm -rf build
mkdir -p build
......@@ -77,18 +70,13 @@ cmake .. \
-DPADDLE_DIR=${PADDLE_DIR} \
-DWITH_STATIC_LIB=${WITH_STATIC_LIB} \
-DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \
-DENCRYPTION_DIR=${ENCRYPTION_DIR} \
-DOPENCV_DIR=${OPENCV_DIR}
-DCUDNN_LIB=${CUDNN_LIB}
make
```
**注意:** linux环境下编译会自动下载OPENCV和YAML,如果编译环境无法访问外网,可手动下载:
**注意:** linux环境下编译会自动下载YAML,如果编译环境无法访问外网,可手动下载:
- [opencv3_aarch.tgz](https://bj.bcebos.com/paddlex/deploy/tools/opencv3_aarch.tgz)
- [yaml-cpp.zip](https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip)
opencv3_aarch.tgz文件下载后解压,然后在script/build.sh中指定`OPENCE_DIR`为解压后的路径。
yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip` 中的网址,改为下载文件的路径。
修改脚本设置好主要参数后,执行`build`脚本:
......@@ -100,7 +88,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](export_model.md)将模型导出为部署格式。**
编译成功后,预测demo的可执行程序分别为`build/demo/detector``build/demo/classifier``build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
* 编译成功后,图片预测demo的可执行程序分别为`build/demo/detector``build/demo/classifier``build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
......@@ -111,10 +99,26 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
| use_trt | 是否使用 TensorRT 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output",**classfier无该参数** |
| key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
| batch_size | 预测的批量大小,默认为1 |
| thread_num | 预测的线程数,默认为cpu处理器个数 |
| use_ir_optim | 是否使用图优化策略,支持值为0或1(默认值为1,图像分割默认值为0)|
* 编译成功后,视频预测demo的可执行程序分别为`build/demo/video_detector``build/demo/video_classifier``build/demo/video_segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| model_dir | 导出的预测模型所在路径 |
| use_camera | 是否使用摄像头预测,支持值为0或1(默认值为0) |
| camera_id | 摄像头设备ID,默认值为0 |
| video_path | 视频文件的路径 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| use_trt | 是否使用 TensorRT 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| show_result | 对视频文件做预测时,是否在屏幕上实时显示预测可视化结果(因加入了延迟处理,故显示结果不能反映真实的帧率),支持值为0或1(默认值为0) |
| save_result | 是否将每帧的预测可视结果保存为视频文件,支持值为0或1(默认值为1) |
| save_dir | 保存可视化结果的路径, 默认值为"output" |
**注意:若系统无GUI,则不要将show_result设置为1。当使用摄像头预测时,按`ESC`键可关闭摄像头并推出预测程序。**
## 样例
......@@ -143,3 +147,21 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
./build/demo/detector --model_dir=/root/projects/inference_model --image_list=/root/projects/images_list.txt --use_gpu=1 --save_dir=output --batch_size=2 --thread_num=2
```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
**样例三:**
使用摄像头预测:
```shell
./build/demo/video_detector --model_dir=/root/projects/inference_model --use_camera=1 --use_gpu=1 --save_dir=output --save_result=1
```
`save_result`设置为1时,`可视化预测结果`会以视频文件的格式保存在`save_dir`参数设置的目录下。
**样例四:**
对视频文件进行预测:
```shell
./build/demo/video_detector --model_dir=/root/projects/inference_model --video_path=/path/to/video_file --use_gpu=1 --save_dir=output --show_result=1 --save_result=1
```
`save_result`设置为1时,`可视化预测结果`会以视频文件的格式保存在`save_dir`参数设置的目录下。如果系统有GUI,通过将`show_result`设置为1在屏幕上观看可视化预测结果。
......@@ -142,9 +142,9 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| use_trt | 是否使用 TensorRT 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| show_result | 是否在屏幕上实时显示预测可视化结果(因加入了延迟处理,故显示结果不能反映真实的帧率),支持值为0或1(默认值为0) |
| show_result | 对视频文件做预测时,是否在屏幕上实时显示预测可视化结果(因加入了延迟处理,故显示结果不能反映真实的帧率),支持值为0或1(默认值为0) |
| save_result | 是否将每帧的预测可视结果保存为视频文件,支持值为0或1(默认值为1) |
| save_dir | 保存可视化结果的路径, 默认值为"output"**classfier无该参数** |
| save_dir | 保存可视化结果的路径, 默认值为"output"|
| key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
**注意:若系统无GUI,则不要将show_result设置为1。当使用摄像头预测时,按`ESC`键可关闭摄像头并推出预测程序。**
......@@ -186,7 +186,7 @@ yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://
```shell
./build/demo/video_detector --model_dir=/root/projects/inference_model --use_camera=1 --use_gpu=1 --save_dir=output --save_result=1
```
`save_result`设置为1时,`可视化预测结果`会以视频文件的格式保存在`save_dir`参数设置的目录下。如果系统有GUI,通过将`show_result`设置为1在屏幕上观看可视化预测结果。
`save_result`设置为1时,`可视化预测结果`会以视频文件的格式保存在`save_dir`参数设置的目录下。
**样例四:**
......
......@@ -127,7 +127,7 @@ cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release
| gpu_id | GPU 设备ID, 默认值为0 |
| show_result | 对视频文件做预测时,是否在屏幕上实时显示预测可视化结果(因加入了延迟处理,故显示结果不能反映真实的帧率),支持值为0或1(默认值为0) |
| save_result | 是否将每帧的预测可视结果保存为视频文件,支持值为0或1(默认值为1) |
| save_dir | 保存可视化结果的路径, 默认值为"output",classifier无该参数 |
| save_dir | 保存可视化结果的路径, 默认值为"output" |
| key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
**注意:若系统无GUI,则不要将show_result设置为1。当使用摄像头预测时,按`ESC`键可关闭摄像头并推出预测程序。**
......@@ -180,7 +180,7 @@ D:\images\xiaoduxiongn.jpeg
```shell
.\paddlex_inference\video_detector.exe --model_dir=D:\projects\inference_model --use_camera=1 --use_gpu=1 --save_dir=output
```
当`save_result`设置为1时,`可视化预测结果`会以视频文件的格式保存在`save_dir`参数设置的目录下。如果系统有GUI,通过将`show_result`设置为1在屏幕上观看可视化预测结果。
当`save_result`设置为1时,`可视化预测结果`会以视频文件的格式保存在`save_dir`参数设置的目录下。
### 样例五:(使用未加密的模型对视频文件做预测)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册