Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
9555b3fb
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9555b3fb
编写于
6月 28, 2020
作者:
J
jack
浏览文件
操作
浏览文件
下载
差异文件
merge
上级
e08f6d65
9f87b6cb
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
3 addition
and
3 deletion
+3
-3
docs/tutorials/deploy/deploy_server/encryption.md
docs/tutorials/deploy/deploy_server/encryption.md
+3
-3
未找到文件。
docs/tutorials/deploy/deploy_server/encryption.md
浏览文件 @
9555b3fb
...
...
@@ -20,7 +20,7 @@ PaddleX提供一个轻量级的模型加密部署方案,通过PaddleX内置的

下面是对提供的C/C++加解密库内部实现的中文描述,参考以下步骤可以实现
一套加解密库 来适应自己的场景并通过内存数据load到paddlepaddle中(c/c++预测服务)
下面是对提供的C/C++加解密库内部实现的中文描述,参考以下步骤可以实现
一套加解密库来适应自己的场景并通过内存数据加载到Paddle Inference预测库中
> 1)考虑到加密的模型文件解密后需要从内存加载数据,使用conbine的模式生成模型文件和参数文件。
>
...
...
@@ -34,7 +34,7 @@ PaddleX提供一个轻量级的模型加密部署方案,通过PaddleX内置的
>
> 6)在模型解密环节根据加密后的文件读取相关的加密数据到内存中,对内存数据使用AES算法进行解密,注意解密时需要采用与加密时一致的加密算法和加密的模式,以及密钥的数据和长度,否则会导致解密后数据错误。
>
> 7)集成模型预测的C/C++库,在具体使用
paddlepaddle
预测时一般涉及paddle::AnalysisConfig和paddle:Predictor,为了能够从内存数据中直接load解密后的模型明文数据(避免模型解密后创建临时文件),这里需要将AnalysisConfig的模型加载函数从SetModel替换为SetModelBuffer来实现从内存中加载模型数据。
> 7)集成模型预测的C/C++库,在具体使用预测时一般涉及paddle::AnalysisConfig和paddle:Predictor,为了能够从内存数据中直接load解密后的模型明文数据(避免模型解密后创建临时文件),这里需要将AnalysisConfig的模型加载函数从SetModel替换为SetModelBuffer来实现从内存中加载模型数据。
需要注意的是,在本方案中,密钥集成在上层预测服务的代码中。故模型的安全强度等同于代码抵御逆向调试的强度。为了保护密钥和模型的安全,开发者还需对自己的应用进行加固保护。常见的应用加固手段有:代码混淆,二进制文件加壳 等等,亦或将加密机制更改为AES白盒加密技术来保护密钥。这类技术领域内有大量商业和开源产品可供选择,此处不一一赘述。
...
...
@@ -80,7 +80,7 @@ Windows:
.\paddlex-encryption\tool\paddlex_encrypt_tool.exe -model_dir D:\\projects\\paddlex_inference_model -save_dir D:\\projects\\paddlex_encrypted_model
```
`-model_dir`
用于指定inference模型路径(参考
[
导出inference模型
](
deploy_python.html#inference
)
将模型导出为inference格式模型),可使用
[
导出小度熊识别模型
](
deploy_python.html#inference
)
中导出的
`inference_model`
(
**注意**
:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考
[
模型版本升级
](
../upgrade_version.md
)
对模型版本进行升级。)
。加密完成后,加密过的模型会保存至指定的
`-save_dir`
下,包含
`__model__.encrypted`
、
`__params__.encrypted`
和
`model.yml`
三个文件,同时生成密钥信息,命令输出如下图所示,密钥为
`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`
`-model_dir`
用于指定inference模型路径(参考
[
导出inference模型
](
deploy_python.html#inference
)
将模型导出为inference格式模型),可使用
[
导出小度熊识别模型
](
deploy_python.html#inference
)
中导出的
`inference_model`
。加密完成后,加密过的模型会保存至指定的
`-save_dir`
下,包含
`__model__.encrypted`
、
`__params__.encrypted`
和
`model.yml`
三个文件,同时生成密钥信息,命令输出如下图所示,密钥为
`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`

...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录