提交 95512480 编写于 作者: J jiangjiajun

fix conficts

上级 8bf14137
# 模型预测部署
本文档指引用户如何采用更高性能地方式来部署使用PaddleX训练的模型。使用本文档模型部署方式,会在模型运算过程中,对模型计算图进行优化,同时减少内存操作,相对比普通的paddlepaddle模型加载和预测方式,预测速度平均可提升1倍,具体各模型性能对比见[预测性能对比](#预测性能对比)
## 服务端部署
### 导出inference模型
在服务端部署的模型需要首先将模型导出为inference格式模型,导出的模型将包括`__model__``__params__``model.yml`三个文名,分别为模型的网络结构,模型权重和模型的配置文件(包括数据预处理参数等等)。在安装完PaddleX后,在命令行终端使用如下命令导出模型到当前目录`inferece_model`下。
> 可直接下载小度熊分拣模型测试本文档的流程[xiaoduxiong_epoch_12.tar.gz](https://bj.bcebos.com/paddlex/models/xiaoduxiong_epoch_12.tar.gz)
```
paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model
```
使用TensorRT预测时,需指定模型的图像输入shape:[w,h]。
**注**
- 分类模型请保持于训练时输入的shape一致。
- 指定[w,h]时,w和h中间逗号隔开,不允许存在空格等其他字符
```
paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./inference_model --fixed_input_shape=[640,960]
```
### Python部署
PaddleX已经集成了基于Python的高性能预测接口,在安装PaddleX后,可参照如下代码示例,进行预测。相关的接口文档可参考[paddlex.deploy](apis/deploy.md)
> 点击下载测试图片 [xiaoduxiong_test_image.tar.gz](https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_test_image.tar.gz)
```
import paddlex as pdx
predictor = pdx.deploy.create_predictor('./inference_model')
result = predictor.predict(image='xiaoduxiong_test_image/JPEGImages/WeChatIMG110.jpeg')
```
### C++部署
C++部署方案位于目录`deploy/cpp/`下,且独立于PaddleX其他模块。该方案支持在 Windows 和 Linux 完成编译、二次开发集成和部署运行。具体使用方法和编译:
- Linux平台:[linux](deploy_cpp_linux.md)
- window平台:[windows](deploy_cpp_win_vs2019.md)
### OpenVINO部署demo
OpenVINO部署demo位于目录`deploy/openvino/`下,且独立于PaddleX其他模块,该demo目前支持在 Linux 完成编译和部署运行。目前PaddleX到OpenVINO的部署流程如下:
graph LR
PaddleX --> ONNX --> OpenVINO IR --> OpenVINO Inference Engine
#### step1
PaddleX输出ONNX模型方法如下:
```
paddlex --export_onnx --model_dir=./xiaoduxiong_epoch_12 --save_dir=./onnx_model
```
|目前支持的模型|
|-----|
|ResNet18|
|ResNet34|
|ResNet50|
|ResNet101|
|ResNet50_vd|
|ResNet101_vd|
|ResNet50_vd_ssld|
|ResNet101_vd_ssld
|DarkNet53|
|MobileNetV1|
|MobileNetV2|
|DenseNet121|
|DenseNet161|
|DenseNet201|
得到ONNX模型后,OpenVINO的部署参考:[OpenVINO部署](deploy_openvino.md)
### 预测性能对比
#### 测试环境
- CUDA 9.0
- CUDNN 7.5
- PaddlePaddle 1.71
- GPU: Tesla P40
- AnalysisPredictor 指采用Python的高性能预测方式
- Executor 指采用paddlepaddle普通的python预测方式
- Batch Size均为1,耗时单位为ms/image,只计算模型运行时间,不包括数据的预处理和后处理
| 模型 | AnalysisPredictor耗时 | Executor耗时 | 输入图像大小 |
| :---- | :--------------------- | :------------ | :------------ |
| resnet50 | 4.84 | 7.57 | 224*224 |
| mobilenet_v2 | 3.27 | 5.76 | 224*224 |
| unet | 22.51 | 34.60 |513*513 |
| deeplab_mobile | 63.44 | 358.31 |1025*2049 |
| yolo_mobilenetv2 | 15.20 | 19.54 | 608*608 |
| faster_rcnn_r50_fpn_1x | 50.05 | 69.58 |800*1088 |
| faster_rcnn_r50_1x | 326.11 | 347.22 | 800*1067 |
| mask_rcnn_r50_fpn_1x | 67.49 | 91.02 | 800*1088 |
| mask_rcnn_r50_1x | 326.11 | 350.94 | 800*1067 |
## 移动端部署
> Lite模型导出正在集成中,即将开源...
# Linux平台编译指南
## 说明
本文档在 `Linux`平台使用`GCC 4.8.5``GCC 4.9.4`测试过,如果需要使用更高G++版本编译使用,则需要重新编译Paddle预测库,请参考: [从源码编译Paddle预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)
## 前置条件
* G++ 4.8.2 ~ 4.9.4
* CUDA 9.0 / CUDA 10.0, CUDNN 7+ (仅在使用GPU版本的预测库时需要)
* CMake 3.0+
请确保系统已经安装好上述基本软件,**下面所有示例以工作目录 `/root/projects/`演示**
### Step1: 下载代码
`git clone https://github.com/PaddlePaddle/PaddleX.git`
**说明**:其中`C++`预测代码在`/root/projects/PaddleX/deploy/cpp` 目录,该目录不依赖任何`PaddleX`下其他目录。
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`,以及是否支持TensorRT,提供了不同的预编译版本,目前PaddleX依赖于Paddle1.7版本,以下提供了多个不同版本的Paddle预测库:
| 版本说明 | 预测库(1.7.2版本) |
| ---- | ---- |
| ubuntu14.04_cpu_avx_mkl | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.7.2-cpu-avx-mkl/fluid_inference.tgz) |
| ubuntu14.04_cpu_avx_openblas | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.7.2-cpu-avx-openblas/fluid_inference.tgz) |
| ubuntu14.04_cpu_noavx_openblas | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.7.2-cpu-noavx-openblas/fluid_inference.tgz) |
| ubuntu14.04_cuda9.0_cudnn7_avx_mkl | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.7.2-gpu-cuda9-cudnn7-avx-mkl/fluid_inference.tgz) |
| ubuntu14.04_cuda10.0_cudnn7_avx_mkl | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.7.2-gpu-cuda10-cudnn7-avx-mkl/fluid_inference.tgz ) |
| ubuntu14.04_cuda10.1_cudnn7.6_avx_mkl_trt6 | [fluid_inference.tgz](https://paddle-inference-lib.bj.bcebos.com/1.7.2-gpu-cuda10.1-cudnn7.6-avx-mkl-trt6%2Ffluid_inference.tgz) |
更多和更新的版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/windows_cpp_inference.html#id1)
下载并解压后`/root/projects/fluid_inference`目录包含内容为:
```
fluid_inference
├── paddle # paddle核心库和头文件
|
├── third_party # 第三方依赖库和头文件
|
└── version.txt # 版本和编译信息
```
**注意:** 预编译版本除`nv-jetson-cuda10-cudnn7.5-trt5` 以外其它包都是基于`GCC 4.8.5`编译,使用高版本`GCC`可能存在 `ABI`兼容性问题,建议降级或[自行编译预测库](https://www.paddlepaddle.org.cn/documentation/docs/zh/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id12)
### Step4: 编译
编译`cmake`的命令在`scripts/build.sh`中,请根据实际情况修改主要参数,其主要内容说明如下:
```
# 是否使用GPU(即是否使用 CUDA)
WITH_GPU=OFF
# 使用MKL or openblas
WITH_MKL=ON
# 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=OFF
# TensorRT 的lib路径
TENSORRT_DIR=/path/to/TensorRT/
# Paddle 预测库路径
PADDLE_DIR=/path/to/fluid_inference/
# Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB=ON
# CUDA 的 lib 路径
CUDA_LIB=/path/to/cuda/lib/
# CUDNN 的 lib 路径
CUDNN_LIB=/path/to/cudnn/lib/
# OPENCV 路径, 如果使用自带预编译版本可不修改
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/
sh $(pwd)/scripts/bootstrap.sh
# 以下无需改动
rm -rf build
mkdir -p build
cd build
cmake .. \
-DWITH_GPU=${WITH_GPU} \
-DWITH_MKL=${WITH_MKL} \
-DWITH_TENSORRT=${WITH_TENSORRT} \
-DTENSORRT_DIR=${TENSORRT_DIR} \
-DPADDLE_DIR=${PADDLE_DIR} \
-DWITH_STATIC_LIB=${WITH_STATIC_LIB} \
-DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \
-DOPENCV_DIR=${OPENCV_DIR}
make
```
修改脚本设置好主要参数后,执行`build`脚本:
```shell
sh ./scripts/build.sh
```
### Step5: 预测及可视化
编译成功后,预测demo的可执行程序分别为`build/detector``build/classifer``build/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| model_dir | 导出的预测模型所在路径 |
| image | 要预测的图片文件路径 |
| image_list | 按行存储图片路径的.txt文件 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| use_trt | 是否使用 TensorTr 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output",classfier无该参数 |
## 样例
可使用[小度熊识别模型](deploy.md#导出inference模型)中导出的`inference_model`和测试图片进行预测。
`样例一`
不使用`GPU`测试图片 `/path/to/xiaoduxiong.jpeg`
```shell
./build/detector --model_dir=/path/to/inference_model --image=/path/to/xiaoduxiong.jpeg --save_dir=output
```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
`样例二`:
使用`GPU`预测多个图片`/path/to/image_list.txt`,image_list.txt内容的格式如下:
```
/path/to/images/xiaoduxiong1.jpeg
/path/to/images/xiaoduxiong2.jpeg
...
/path/to/images/xiaoduxiongn.jpeg
```
```shell
./build/detector --model_dir=/path/to/models/inference_model --image_list=/root/projects/images_list.txt --use_gpu=1 --save_dir=output
```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
# Visual Studio 2019 Community CMake 编译指南
## 说明
Windows 平台下,我们使用`Visual Studio 2019 Community` 进行了测试。微软从`Visual Studio 2017`开始即支持直接管理`CMake`跨平台编译项目,但是直到`2019`才提供了稳定和完全的支持,所以如果你想使用CMake管理项目编译构建,我们推荐你使用`Visual Studio 2019`环境下构建。
## 前置条件
* Visual Studio 2019
* CUDA 9.0 / CUDA 10.0, CUDNN 7+ (仅在使用GPU版本的预测库时需要)
* CMake 3.0+
请确保系统已经安装好上述基本软件,我们使用的是`VS2019`的社区版。
**下面所有示例以工作目录为 `D:\projects`演示**
### Step1: 下载代码
下载源代码
```shell
d:
mkdir projects
cd projects
git clone https://github.com/PaddlePaddle/PaddleX.git
```
**说明**:其中`C++`预测代码在`PaddleX/deploy/cpp` 目录,该目录不依赖任何`PaddleX`下其他目录。
### Step2: 下载PaddlePaddle C++ 预测库 fluid_inference
PaddlePaddle C++ 预测库针对不同的`CPU``CUDA`,以及是否支持TensorRT,提供了不同的预编译版本,目前PaddleX依赖于Paddle1.7版本,以下提供了多个不同版本的Paddle预测库:
| 版本说明 | 预测库(1.7.2版本) | 编译器 | 构建工具| cuDNN | CUDA
| ---- | ---- | ---- | ---- | ---- | ---- |
| cpu_avx_mkl | [fluid_inference.zip](https://paddle-wheel.bj.bcebos.com/1.7.2/win-infer/mkl/cpu/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 |
| cpu_avx_openblas | [fluid_inference.zip](https://paddle-wheel.bj.bcebos.com/1.7.2/win-infer/open/cpu/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 |
| cuda9.0_cudnn7_avx_mkl | [fluid_inference.zip](https://paddle-wheel.bj.bcebos.com/1.7.2/win-infer/mkl/post97/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 | 7.4.1 | 9.0 |
| cuda9.0_cudnn7_avx_openblas | [fluid_inference.zip](https://paddle-wheel.bj.bcebos.com/1.7.2/win-infer/open/post97/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 | 7.4.1 | 9.0 |
| cuda10.0_cudnn7_avx_mkl | [fluid_inference.zip](https://paddle-wheel.bj.bcebos.com/1.7.2/win-infer/mkl/post107/fluid_inference_install_dir.zip) | MSVC 2015 update 3 | CMake v3.16.0 | 7.5.0 | 9.0 |
更多和更新的版本,请根据实际情况下载: [C++预测库下载列表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/advanced_guide/inference_deployment/inference/build_and_install_lib_cn.html#id1)
解压后`D:\projects\fluid_inference*\`目录下主要包含的内容为:
```
├── \paddle\ # paddle核心库和头文件
|
├── \third_party\ # 第三方依赖库和头文件
|
└── \version.txt # 版本和编译信息
```
### Step3: 安装配置OpenCV
1. 在OpenCV官网下载适用于Windows平台的3.4.6版本, [下载地址](https://sourceforge.net/projects/opencvlibrary/files/3.4.6/opencv-3.4.6-vc14_vc15.exe/download)
2. 运行下载的可执行文件,将OpenCV解压至指定目录,如`D:\projects\opencv`
3. 配置环境变量,如下流程所示
- 我的电脑->属性->高级系统设置->环境变量
- 在系统变量中找到Path(如没有,自行创建),并双击编辑
- 新建,将opencv路径填入并保存,如`D:\projects\opencv\build\x64\vc14\bin`
### Step4: 使用Visual Studio 2019直接编译CMake
1. 打开Visual Studio 2019 Community,点击`继续但无需代码`
![step2](images/vs2019_step1.png)
2. 点击: `文件`->`打开`->`CMake`
![step2.1](images/vs2019_step2.png)
选择项目代码所在路径,并打开`CMakeList.txt`:
![step2.2](images/vs2019_step3.png)
3. 点击:`项目`->`PADDLEX_INFERENCE的CMake设置`
![step3](images/vs2019_step4.png)
4. 点击`浏览`,分别设置编译选项指定`CUDA`、`OpenCV`、`Paddle预测库`的路径
依赖库路径的含义说明如下(带*表示仅在使用**GPU版本**预测库时指定, 其中CUDA库版本尽量对齐,**使用9.0、10.0版本,不使用9.2、10.1等版本CUDA库**):
| 参数名 | 含义 |
| ---- | ---- |
| *CUDA_LIB | CUDA的库路径, 注:请将CUDNN的cudnn.lib文件拷贝到CUDA_LIB路径下 |
| OPENCV_DIR | OpenCV的安装路径, |
| PADDLE_DIR | Paddle c++预测库的路径 |
**注意:** 1. 使用`CPU`版预测库,请把`WITH_GPU`的``去掉勾 2. 如果使用的是`openblas`版本,请把`WITH_MKL`的``去掉勾
![step4](images/vs2019_step5.png)
**设置完成后**, 点击上图中`保存并生成CMake缓存以加载变量`。
5. 点击`生成`->`全部生成`
![step6](images/vs2019_step6.png)
### Step5: 预测及可视化
上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录:
```
d:
cd D:\projects\PaddleX\deploy\cpp\out\build\x64-Release
```
编译成功后,预测demo的入口程序为`detector`,`classifer`,`segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| model_dir | 导出的预测模型所在路径 |
| image | 要预测的图片文件路径 |
| image_list | 按行存储图片路径的.txt文件 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output",classfier无该参数 |
## 样例
可使用[小度熊识别模型](deploy.md#导出inference模型)中导出的`inference_model`和测试图片进行预测。
`样例一`:
不使用`GPU`测试图片 `\\path\\to\\xiaoduxiong.jpeg`
```shell
.\detector --model_dir=\\path\\to\\inference_model --image=D:\\images\\xiaoduxiong.jpeg --save_dir=output
```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
`样例二`:
使用`GPU`预测多个图片`\\path\\to\\image_list.txt`,image_list.txt内容的格式如下:
```
\\path\\to\\images\\xiaoduxiong1.jpeg
\\path\\to\\images\\xiaoduxiong2.jpeg
...
\\path\\to\\images\\xiaoduxiongn.jpeg
```
```shell
.\detector --model_dir=\\path\\to\\inference_model --image_list=\\path\\to\\images_list.txt --use_gpu=1 --save_dir=output
```
图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
# OpenVINO 分类demo编译
## 说明
本文档在 `Ubuntu`使用`GCC 4.8.5` 进行了验证,如果需要使用更多G++版本和平台的OpenVino编译,请参考: [OpenVINO](https://github.com/openvinotoolkit/openvino/blob/2020/build-instruction.md)
## 验证环境
* Ubuntu* 16.04 (64-bit) with GCC* 4.8.5
* CMake 3.12
* Python 2.7 or higher
请确保系统已经安装好上述基本软件,**下面所有示例以工作目录 `/root/projects/`演示**
`git clone https://github.com/PaddlePaddle/PaddleX.git`
**说明**:其中`C++`预测代码在`/root/projects/PaddleX/deploy/openvino` 目录,该目录不依赖任何`PaddleX`下其他目录。
### Step1: 软件依赖
- openvino:
[编译文档](https://github.com/openvinotoolkit/openvino/blob/2020/build-instruction.md#build-steps)
- gflags:
[编译文档](https://gflags.github.io/gflags/#download)
- opencv:
[编译文档](https://docs.opencv.org/master/d7/d9f/tutorial_linux_install.html)
说明:/root/projects/PaddleX/deploy/openvino/scripts/bootstrap.sh提供了预编译版本下载,也可自行编译。
- ngraph:
说明:openvino编译的过程中会生成ngraph的lib文件,位于{openvino根目录}/bin/intel64/Release/lib/下。
### Step2: 编译demo
编译`cmake`的命令在`scripts/build.sh`中,请根据Step1中编译软件的实际情况修改主要参数,其主要内容说明如下:
```
# openvino预编译库的路径
OPENVINO_DIR=/path/to/inference_engine/
# gflags预编译库的路径
GFLAGS_DIR=/path/to/gflags
# ngraph lib的路径,编译openvino时通常会生成
NGRAPH_LIB=/path/to/ngraph/lib/
# opencv预编译库的路径, 如果使用自带预编译版本可不修改
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/
# 下载自带预编译版本
sh $(pwd)/scripts/bootstrap.sh
rm -rf build
mkdir -p build
cd build
cmake .. \
-DOPENCV_DIR=${OPENCV_DIR} \
-DGFLAGS_DIR=${GFLAGS_DIR} \
-DOPENVINO_DIR=${OPENVINO_DIR} \
-DNGRAPH_LIB=${NGRAPH_LIB}
make
```
修改脚本设置好主要参数后,执行`build`脚本:
```shell
sh ./scripts/build.sh
```
### Step3: 模型转换
[]()生成的onnx文件转换为OpencVINO支持的格式,请参考:[Model Optimizer文档](https://docs.openvinotoolkit.org/latest/_docs_MO_DG_Deep_Learning_Model_Optimizer_DevGuide.html)
### Step4: 预测
编译成功后,预测demo的可执行程序分别为`build/classifer`,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| --model_dir | Model Optimizer生成的.xml文件路径,请保证Model Optimizer生成的三个文件在同一路径下|
| --image | 要预测的图片文件路径 |
| --image_list | 按行存储图片路径的.txt文件 |
| --device | 运行的平台, 默认值为"CPU" |
## 样例
可使用[小度熊识别模型](deploy.md#导出inference模型)中导出的`inference_model`和测试图片进行预测。
`样例一`
测试图片 `/path/to/xiaoduxiong.jpeg`
```shell
./build/classifier --model_dir=/path/to/inference_model --image=/path/to/xiaoduxiong.jpeg
```
`样例二`:
预测多个图片`/path/to/image_list.txt`,image_list.txt内容的格式如下:
```
/path/to/images/xiaoduxiong1.jpeg
/path/to/images/xiaoduxiong2.jpeg
...
/path/to/images/xiaoduxiongn.jpeg
```
```shell
./build/classifier --model_dir=/path/to/models/inference_model --image_list=/root/projects/images_list.txt -
```
# Paddle模型加密方案
飞桨团队推出模型加密方案,使用业内主流的AES加密技术对最终模型进行加密。飞桨用户可以通过PaddleX导出模型后,使用该方案对模型进行加密,预测时使用解密SDK进行模型解密并完成推理,大大提升AI应用安全性和开发效率。
## 1. 方案介绍
### 1.1 工具组成
[链接](http://wiki.baidu.com/pages/viewpage.action?pageId=1128566963)
下载并解压后,目录包含内容为:
```
paddle_model_encrypt
├── include # 头文件:paddle_model_decrypt.h(解密)和paddle_model_encrypt.h(加密)
|
├── lib # libpmodel-encrypt.so和libpmodel-decrypt.so动态库
|
└── tool # paddle_encrypt_tool
```
### 1.2 二进制工具
#### 1.2.1 生成密钥
产生随机密钥信息(用于AES加解密使用)(32字节key + 16字节iv, 注意这里产生的key是经过base64编码后的,这样可以扩充选取key的范围)
```
paddle_encrypt_tool -g
```
#### 1.2.1 文件加密
```
paddle_encrypt_tool -e -key keydata -infile infile -outfile outfile
```
#### 1.3 SDK
```
// 加密API
int paddle_encrypt_model(const char* keydata, const char* infile, const char* outfile);
// 加载加密模型API:
int paddle_security_load_model(
paddle::AnalysisConfig *config,
const char *key,
const char *model_file,
const char *param_file);
```
## 2. PaddleX C++加密部署
......@@ -48,4 +48,4 @@ load_model = cv.models.load_model
datasets = cv.datasets
log_level = 2
__version__ = '0.1.7.github'
__version__ = '0.1.9.github'
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册