未验证 提交 948032a7 编写于 作者: S SunAhong1993 提交者: GitHub

Merge pull request #9 from PaddlePaddle/develop

00
......@@ -66,7 +66,7 @@ int main(int argc, char** argv) {
std::cout << "image file: " << image_path
<< ", predict label: " << result.boxes[i].category
<< ", label_id:" << result.boxes[i].category_id
<< ", score: " << result.boxes[i].score << ", box:("
<< ", score: " << result.boxes[i].score << ", box(xmin, ymin, w, h):("
<< result.boxes[i].coordinate[0] << ", "
<< result.boxes[i].coordinate[1] << ", "
<< result.boxes[i].coordinate[2] << ", "
......@@ -89,7 +89,7 @@ int main(int argc, char** argv) {
for (int i = 0; i < result.boxes.size(); ++i) {
std::cout << ", predict label: " << result.boxes[i].category
<< ", label_id:" << result.boxes[i].category_id
<< ", score: " << result.boxes[i].score << ", box:("
<< ", score: " << result.boxes[i].score << ", box(xmin, ymin, w, h):("
<< result.boxes[i].coordinate[0] << ", "
<< result.boxes[i].coordinate[1] << ", "
<< result.boxes[i].coordinate[2] << ", "
......
......@@ -35,7 +35,7 @@ train(self, num_epochs, train_dataset, train_batch_size=64, eval_dataset=None, s
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop** (bool): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
......@@ -186,3 +186,7 @@ paddlex.cls.DenseNet161(num_classes=1000)
paddlex.cls.DenseNet201(num_classes=1000)
```
### HRNet_W18
```python
paddlex.cls.HRNet_W18(num_classes=1000)
```
......@@ -53,7 +53,7 @@ train(self, num_epochs, train_dataset, train_batch_size=8, eval_dataset=None, sa
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在PascalVOC数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop** (bool): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
......@@ -107,7 +107,7 @@ paddlex.det.FasterRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspec
> **参数**
> > - **num_classes** (int): 包含了背景类的类别数。默认为81。
> > - **backbone** (str): FasterRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd']。默认为'ResNet50'。
> > - **backbone** (str): FasterRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18']。默认为'ResNet50'。
> > - **with_fpn** (bool): 是否使用FPN结构。默认为True。
> > - **aspect_ratios** (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
> > - **anchor_sizes** (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
......
......@@ -12,7 +12,7 @@ paddlex.det.MaskRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_
> **参数**
> > - **num_classes** (int): 包含了背景类的类别数。默认为81。
> > - **backbone** (str): MaskRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd']。默认为'ResNet50'。
> > - **backbone** (str): MaskRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18']。默认为'ResNet50'。
> > - **with_fpn** (bool): 是否使用FPN结构。默认为True。
> > - **aspect_ratios** (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
> > - **anchor_sizes** (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
......@@ -82,4 +82,4 @@ predict(self, img_file, transforms=None)
>
> **返回值**
>
> > - **list**: 预测结果列表,列表中每个元素均为一个dict,key'bbox', 'mask', 'category', 'category_id', 'score',分别表示每个预测目标的框坐标信息、Mask信息,类别、类别id、置信度,其中框坐标信息为[xmin, ymin, w, h],即左上角x, y坐标和框的宽和高
> > - **list**: 预测结果列表,列表中每个元素均为一个dict,key'bbox', 'mask', 'category', 'category_id', 'score',分别表示每个预测目标的框坐标信息、Mask信息,类别、类别id、置信度。其中框坐标信息为[xmin, ymin, w, h],即左上角x, y坐标和框的宽和高。Mask信息为原图大小的二值图,1表示像素点属于预测类别,0表示像素点是背景
......@@ -47,7 +47,7 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, ev
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop** (bool): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
......@@ -124,7 +124,7 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, ev
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认'output'
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在COCO图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认'COCO'。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'COCO',则自动下载在COCO图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认'COCO'。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
......@@ -173,3 +173,88 @@ predict(self, im_file, transforms=None):
> **返回值**
> >
> > - **dict**: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)。
## HRNet类
```python
paddlex.seg.HRNet(num_classes=2, width=18, use_bce_loss=False, use_dice_loss=False, class_weight=None, ignore_index=255)
```
> 构建HRNet分割器。
> **参数**
> > - **num_classes** (int): 类别数。
> > - **width** (int): 高分辨率分支中特征层的通道数量。默认值为18。可选择取值为[18, 30, 32, 40, 44, 48, 60, 64]。
> > - **use_bce_loss** (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。默认False。
> > - **use_dice_loss** (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。默认False。
> > - **class_weight** (list/str): 交叉熵损失函数各类损失的权重。当`class_weight`为list的时候,长度应为`num_classes`。当`class_weight`为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,即平时使用的交叉熵损失函数。
> > - **ignore_index** (int): label上忽略的值,label为`ignore_index`的像素不参与损失函数的计算。默认255。
### train 训练接口
```python
train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, eval_batch_size=1, save_interval_epochs=1, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.01, lr_decay_power=0.9, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5, resume_checkpoint=None):
```
> HRNet模型训练接口。
> **参数**
> >
> > - **num_epochs** (int): 训练迭代轮数。
> > - **train_dataset** (paddlex.datasets): 训练数据读取器。
> > - **train_batch_size** (int): 训练数据batch大小。同时作为验证数据batch大小。默认2。
> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认'output'
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet数据集上预训练的模型权重;若为None,则不使用预训练模型。默认'IMAGENET'。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
#### evaluate 评估接口
```
evaluate(self, eval_dataset, batch_size=1, epoch_id=None, return_details=False):
```
> HRNet模型评估接口。
> **参数**
> >
> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
> > - **batch_size** (int): 评估时的batch大小。默认1。
> > - **epoch_id** (int): 当前评估模型所在的训练轮数。
> > - **return_details** (bool): 是否返回详细信息。默认False。
> **返回值**
> >
> > - **dict**: 当return_details为False时,返回dict。包含关键字:'miou'、'category_iou'、'macc'、
> > 'category_acc'和'kappa',分别表示平均iou、各类别iou、平均准确率、各类别准确率和kappa系数。
> > - **tuple** (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
> > 包含关键字:'confusion_matrix',表示评估的混淆矩阵。
#### predict 预测接口
```
predict(self, im_file, transforms=None):
```
> HRNet模型预测接口。需要注意的是,只有在训练过程中定义了eval_dataset,模型在保存时才会将预测时的图像处理流程保存在`UNet.test_transforms`和`UNet.eval_transforms`中。如未在训练时定义eval_dataset,那在调用预测`predict`接口时,用户需要再重新定义test_transforms传入给`predict`接口。
> **参数**
> >
> > - **img_file** (str): 预测图像路径。
> > - **transforms** (paddlex.seg.transforms): 数据预处理操作。
> **返回值**
> >
> > - **dict**: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)。
......@@ -10,7 +10,7 @@ PaddleX对于图像分类、目标检测、实例分割和语义分割内置了
| :------- | :------------|
| 图像分类 | [RandomCrop](cls_transforms.html#randomcrop)[RandomHorizontalFlip](cls_transforms.html#randomhorizontalflip)[RandomVerticalFlip](cls_transforms.html#randomverticalflip)<br> [RandomRotate](cls_transforms.html#randomratate)[RandomDistort](cls_transforms.html#randomdistort) |
|目标检测<br>实例分割| [RandomHorizontalFlip](det_transforms.html#randomhorizontalflip)[RandomDistort](det_transforms.html#randomdistort)[RandomCrop](det_transforms.html#randomcrop)<br> [MixupImage](det_transforms.html#mixupimage)(仅支持YOLOv3模型)[RandomExpand](det_transforms.html#randomexpand) |
|语义分割 | [RandomHorizontalFlip](seg_transforms.html#randomhorizontalflip)[RandomVerticalFlip](seg_transforms.html#randomverticalflip)[RandomRangeScaling](seg_transforms.html#randomrangescaling)<br> [RandomStepScaling](seg_transforms.html#randomstepscaling)[RandomPaddingCrop](seg_transforms.html#randompaddingcrop)[RandomBlur](seg_transforms.html#randomblur)<br> [RandomRotation](seg_transforms.html#randomrotation)[RandomScaleAspect](seg_transforms.html#randomscaleaspect)[RandomDistort](seg_transforms.html#randomdistort) |
|语义分割 | [RandomHorizontalFlip](seg_transforms.html#randomhorizontalflip)[RandomVerticalFlip](seg_transforms.html#randomverticalflip)[RandomRangeScaling](seg_transforms.html#randomrangescaling)<br> [RandomStepScaling](seg_transforms.html#randomstepscaling)[RandomPaddingCrop](seg_transforms.html#randompaddingcrop)[RandomBlur](seg_transforms.html#randomblur)<br> [RandomRotate](seg_transforms.html#randomrotate)[RandomScaleAspect](seg_transforms.html#randomscaleaspect)[RandomDistort](seg_transforms.html#randomdistort) |
## imgaug增强库的支持
......
......@@ -120,7 +120,7 @@ paddlex.seg.transforms.RandomBlur(prob=0.1)
* **prob** (float): 图像模糊概率。默认为0.1。
## RandomRotation
## RandomRotate
```python
paddlex.seg.transforms.RandomRotate(rotate_range=15, im_padding_value=[127.5, 127.5, 127.5], label_padding_value=255)
```
......
......@@ -27,6 +27,7 @@
| DenseNet161|116.3MB | 8.863 | 78.6 | 94.1 |
| DenseNet201| 84.6MB | 8.173 | 77.6 | 93.7 |
| ShuffleNetV2 | 9.0MB | 10.941 | 68.8 | 88.5 |
| HRNet_W18 | 21.29MB | 7.368 (V100 GPU) | 76.9 | 93.4 |
## 目标检测模型
......@@ -41,6 +42,7 @@
|FasterRCNN-ResNet50_vd-FPN|168.7MB | 45.773 | 38.9 |
|FasterRCNN-ResNet101-FPN| 251.7MB | 55.782 | 38.7 |
|FasterRCNN-ResNet101_vd-FPN |252MB | 58.785 | 40.5 |
|FasterRCNN-HRNet_W18-FPN |115.5MB | 57.11 | 36 |
|YOLOv3-DarkNet53|252.4MB | 21.944 | 38.9 |
|YOLOv3-MobileNetv1 |101.2MB | 12.771 | 29.3 |
|YOLOv3-MobileNetv3|94.6MB | - | 31.6 |
......@@ -49,4 +51,3 @@
## 实例分割模型
> 表中模型相关指标均为在MSCOCO数据集上测试得到。
模型压缩
============================
.. toctree::
:maxdepth: 2
prune.md
quant.md
# 模型裁剪
## 原理介绍
模型裁剪用于减小模型的计算量和体积,可以加快模型部署后的预测速度,是一种减小模型大小和降低模型计算复杂度的常用方式,通过裁剪卷积层中Kernel输出通道的大小及其关联层参数大小来实现,其关联裁剪的原理可参见[PaddleSlim相关文档](https://paddlepaddle.github.io/PaddleSlim/algo/algo.html#id16)**一般而言,在同等模型精度前提下,数据复杂度越低,模型可以被裁剪的比例就越高**
## 裁剪方法
PaddleX提供了两种方式:
**1.用户自行计算裁剪配置(推荐),整体流程包含三个步骤,**
> **第一步**: 使用数据集训练原始模型
> **第二步**:利用第一步训练好的模型,在验证数据集上计算模型中各个参数的敏感度,并将敏感度信息存储至本地文件
> **第三步**:使用数据集训练裁剪模型(与第一步差异在于需要在`train`接口中,将第二步计算得到的敏感信息文件传给接口的`sensitivities_file`参数)
> 在如上三个步骤中,**相当于模型共需要训练两遍**,分别对应第一步和第三步,但其中第三步训练的是裁剪后的模型,因此训练速度较第一步会更快。
> 第二步会遍历模型中的部分裁剪参数,分别计算各个参数裁剪后对于模型在验证集上效果的影响,**因此会反复在验证集上评估多次**。
**2.使用PaddleX内置的裁剪方案**
> PaddleX内置的模型裁剪方案是**基于标准数据集**上计算得到的参数敏感度信息,由于不同数据集特征分布会有较大差异,所以该方案相较于第1种方案训练得到的模型**精度一般而言会更低**(**且用户自定义数据集与标准数据集特征分布差异越大,导致训练的模型精度会越低**),仅在用户想节省时间的前提下可以参考使用,使用方式只需一步,
> **一步**: 使用数据集训练裁剪模型,在训练调用`train`接口时,将接口中的`sensitivities_file`参数设置为'DEFAULT'字符串
> 注:各模型内置的裁剪方案分别依据的数据集为: 图像分类——ImageNet数据集、目标检测——PascalVOC数据集、语义分割——CityScape数据集
## 裁剪实验
基于上述两种方案,我们在PaddleX上使用样例数据进行了实验,在Tesla P40上实验指标如下所示,
### 图像分类
实验背景:使用MobileNetV2模型,数据集为蔬菜分类示例数据,见[使用教程-模型压缩-图像分类](../tutorials/compress/classification.md)
| 模型 | 裁剪情况 | 模型大小 | Top1准确率(%) |GPU预测速度 | CPU预测速度 |
| :-----| :--------| :-------- | :---------- |:---------- |:----------|
|MobileNetV2 | 无裁剪(原模型)| 13.0M | 97.50|6.47ms |47.44ms |
|MobileNetV2 | 方案一(eval_metric_loss=0.10) | 2.1M | 99.58 |5.03ms |20.22ms |
|MobileNetV2 | 方案二(eval_metric_loss=0.10) | 6.0M | 99.58 |5.42ms |29.06ms |
### 目标检测
实验背景:使用YOLOv3-MobileNetV1模型,数据集为昆虫检测示例数据,见[使用教程-模型压缩-目标检测](../tutorials/compress/detection.md)
| 模型 | 裁剪情况 | 模型大小 | MAP(%) |GPU预测速度 | CPU预测速度 |
| :-----| :--------| :-------- | :---------- |:---------- | :---------|
|YOLOv3-MobileNetV1 | 无裁剪(原模型)| 139M | 67.57| 14.88ms |976.42ms |
|YOLOv3-MobileNetV1 | 方案一(eval_metric_loss=0.10) | 34M | 75.49 |10.60ms |558.49ms |
|YOLOv3-MobileNetV1 | 方案二(eval_metric_loss=0.05) | 29M | 50.27| 9.43ms |360.46ms |
### 语义分割
实验背景:使用UNet模型,数据集为视盘分割示例数据, 见[使用教程-模型压缩-语义分割](../tutorials/compress/segmentation.md)
| 模型 | 裁剪情况 | 模型大小 | mIOU(%) |GPU预测速度 | CPU预测速度 |
| :-----| :--------| :-------- | :---------- |:---------- | :---------|
|UNet | 无裁剪(原模型)| 77M | 91.22 |33.28ms |9523.55ms |
|UNet | 方案一(eval_metric_loss=0.10) |26M | 90.37 |21.04ms |3936.20ms |
|UNet | 方案二(eval_metric_loss=0.10) |23M | 91.21 |18.61ms |3447.75ms |
# 模型量化
## 原理介绍
为了满足低内存带宽、低功耗、低计算资源占用以及低模型存储等需求,定点量化被提出。为此我们提供了训练后量化,该量化使用KL散度确定量化比例因子,将FP32模型转成INT8模型,且不需要重新训练,可以快速得到量化模型。
## 使用PaddleX量化模型
PaddleX提供了`export_quant_model`接口,让用户以接口的形式完成模型以post_quantization方式量化并导出。点击查看[量化接口使用文档](../apis/slim.md)
## 量化性能对比
模型量化后的性能对比指标请查阅[PaddleSlim模型库](https://paddlepaddle.github.io/PaddleSlim/model_zoo.html)
......@@ -96,6 +96,17 @@ cmake .. \
make
```
**注意:** linux环境下编译会自动下载OPENCV, PaddleX-Encryption和YAML,如果编译环境无法访问外网,可手动下载:
- [opencv3gcc4.8.tar.bz2](https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2)
- [paddlex-encryption.zip](https://bj.bcebos.com/paddlex/tools/paddlex-encryption.zip)
- [yaml-cpp.zip](https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip)
opencv3gcc4.8.tar.bz2文件下载后解压,然后在script/build.sh中指定`OPENCE_DIR`为解压后的路径。
paddlex-encryption.zip文件下载后解压,然后在script/build.sh中指定`ENCRYPTION_DIR`为解压后的路径。
yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip` 中的网址,改为下载文件的路径。
修改脚本设置好主要参数后,执行`build`脚本:
```shell
......@@ -104,8 +115,9 @@ make
### Step5: 预测及可视化
参考[导出inference模型](../../deploy_python.html#inference)将模型导出为inference格式模型。
**注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../../upgrade_version.md)对模型版本进行升级。**
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../deploy_python.html#inference)将模型导出为部署格式。**
> **注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型(模型版本可查看model.yml文件中的version字段)暂时无法直接用于预测部署,参考[模型版本升级](../../upgrade_version.md)对模型版本进行升级。**
编译成功后,预测demo的可执行程序分别为`build/demo/detector``build/demo/classifer``build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
......@@ -117,7 +129,7 @@ make
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| use_trt | 是否使用 TensorTr 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output",classfier无该参数 |
| save_dir | 保存可视化结果的路径, 默认值为"output",**classfier无该参数** |
## 样例
......
......@@ -86,7 +86,14 @@ PaddlePaddle C++ 预测库针对不同的`CPU`,`CUDA`,以及是否支持Tens
| OPENCV_DIR | OpenCV的安装路径, |
| PADDLE_DIR | Paddle c++预测库的路径 |
**注意:** 1. 使用`CPU`版预测库,请把`WITH_GPU`的``去掉勾 2. 如果使用的是`openblas`版本,请把`WITH_MKL`的``去掉勾
**注意:**
1. 使用`CPU`版预测库,请把`WITH_GPU`的``去掉勾
2. 如果使用的是`openblas`版本,请把`WITH_MKL`的``去掉勾
3. Windows环境下编译会自动下载YAML,如果编译环境无法访问外网,可手动下载: [yaml-cpp.zip](https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip)
yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip` 中的网址,改为下载文件的路径。
![step4](../../images/vs2019_step5.png)
......@@ -99,8 +106,10 @@ PaddlePaddle C++ 预测库针对不同的`CPU`,`CUDA`,以及是否支持Tens
### Step5: 预测及可视化
参考[导出inference模型](../deploy_python.html#inference)将模型导出为inference格式模型。
**注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../../upgrade_version.md)对模型版本进行升级。**
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../deploy_python.html#inference)将模型导出为部署格式。**
**注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型(模型版本可查看model.yml文件中的version字段)暂时无法直接用于预测部署,参考[模型版本升级](../../upgrade_version.md)对模型版本进行升级。**
上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录:
......
......@@ -53,4 +53,4 @@ log_level = 2
from . import interpret
__version__ = '1.0.2.github'
__version__ = '1.0.4'
......@@ -36,5 +36,6 @@ DenseNet121 = cv.models.DenseNet121
DenseNet161 = cv.models.DenseNet161
DenseNet201 = cv.models.DenseNet201
ShuffleNetV2 = cv.models.ShuffleNetV2
HRNet_W18 = cv.models.HRNet_W18
transforms = cv.transforms.cls_transforms
......@@ -209,8 +209,8 @@ def GenerateMiniBatch(batch_data):
padding_batch = []
for data in batch_data:
im_c, im_h, im_w = data[0].shape[:]
padding_im = np.zeros((im_c, max_shape[1], max_shape[2]),
dtype=np.float32)
padding_im = np.zeros(
(im_c, max_shape[1], max_shape[2]), dtype=np.float32)
padding_im[:, :im_h, :im_w] = data[0]
padding_batch.append((padding_im, ) + data[1:])
return padding_batch
......@@ -226,8 +226,8 @@ class Dataset:
if num_workers == 'auto':
import multiprocessing as mp
num_workers = mp.cpu_count() // 2 if mp.cpu_count() // 2 < 8 else 8
if platform.platform().startswith(
"Darwin") or platform.platform().startswith("Windows"):
if platform.platform().startswith("Darwin") or platform.platform(
).startswith("Windows"):
parallel_method = 'thread'
if transforms is None:
raise Exception("transform should be defined.")
......
......@@ -34,11 +34,13 @@ from .classifier import DenseNet121
from .classifier import DenseNet161
from .classifier import DenseNet201
from .classifier import ShuffleNetV2
from .classifier import HRNet_W18
from .base import BaseAPI
from .yolo_v3 import YOLOv3
from .faster_rcnn import FasterRCNN
from .mask_rcnn import MaskRCNN
from .unet import UNet
from .deeplabv3p import DeepLabv3p
from .hrnet import HRNet
from .load_model import load_model
from .slim import prune
......@@ -79,9 +79,9 @@ class BaseAPI:
return int(batch_size // len(self.places))
else:
raise Exception("Please support correct batch_size, \
which can be divided by available cards({}) in {}".
format(paddlex.env_info['num'],
paddlex.env_info['place']))
which can be divided by available cards({}) in {}"
.format(paddlex.env_info['num'], paddlex.env_info[
'place']))
def build_program(self):
# 构建训练网络
......@@ -198,6 +198,8 @@ class BaseAPI:
backbone = self.backbone
else:
backbone = self.__class__.__name__
if backbone == "HRNet":
backbone = backbone + "_W{}".format(self.width)
pretrain_weights = get_pretrain_weights(
pretrain_weights, self.model_type, backbone, pretrain_dir)
if startup_prog is None:
......@@ -210,8 +212,8 @@ class BaseAPI:
paddlex.utils.utils.load_pretrain_weights(
self.exe, self.train_prog, resume_checkpoint, resume=True)
if not osp.exists(osp.join(resume_checkpoint, "model.yml")):
raise Exception(
"There's not model.yml in {}".format(resume_checkpoint))
raise Exception("There's not model.yml in {}".format(
resume_checkpoint))
with open(osp.join(resume_checkpoint, "model.yml")) as f:
info = yaml.load(f.read(), Loader=yaml.Loader)
self.completed_epochs = info['completed_epochs']
......@@ -269,13 +271,13 @@ class BaseAPI:
except:
pass
if hasattr(self, 'test_transforms'):
if hasattr(self.test_transforms, 'to_rgb'):
if self.test_transforms.to_rgb:
info['TransformsMode'] = 'RGB'
else:
info['TransformsMode'] = 'BGR'
if hasattr(self, 'test_transforms'):
if self.test_transforms is not None:
info['Transforms'] = list()
for op in self.test_transforms.transforms:
......@@ -362,8 +364,8 @@ class BaseAPI:
# 模型保存成功的标志
open(osp.join(save_dir, '.success'), 'w').close()
logging.info(
"Model for inference deploy saved in {}.".format(save_dir))
logging.info("Model for inference deploy saved in {}.".format(
save_dir))
def train_loop(self,
num_epochs,
......@@ -377,7 +379,8 @@ class BaseAPI:
early_stop=False,
early_stop_patience=5):
if train_dataset.num_samples < train_batch_size:
raise Exception('The amount of training datset must be larger than batch size.')
raise Exception(
'The amount of training datset must be larger than batch size.')
if not osp.isdir(save_dir):
if osp.exists(save_dir):
os.remove(save_dir)
......@@ -415,8 +418,8 @@ class BaseAPI:
build_strategy=build_strategy,
exec_strategy=exec_strategy)
total_num_steps = math.floor(
train_dataset.num_samples / train_batch_size)
total_num_steps = math.floor(train_dataset.num_samples /
train_batch_size)
num_steps = 0
time_stat = list()
time_train_one_epoch = None
......@@ -430,8 +433,8 @@ class BaseAPI:
if self.model_type == 'detector':
eval_batch_size = self._get_single_card_bs(train_batch_size)
if eval_dataset is not None:
total_num_steps_eval = math.ceil(
eval_dataset.num_samples / eval_batch_size)
total_num_steps_eval = math.ceil(eval_dataset.num_samples /
eval_batch_size)
if use_vdl:
# VisualDL component
......@@ -473,7 +476,9 @@ class BaseAPI:
if use_vdl:
for k, v in step_metrics.items():
log_writer.add_scalar('Metrics/Training(Step): {}'.format(k), v, num_steps)
log_writer.add_scalar(
'Metrics/Training(Step): {}'.format(k), v,
num_steps)
# 估算剩余时间
avg_step_time = np.mean(time_stat)
......@@ -481,11 +486,12 @@ class BaseAPI:
eta = (num_epochs - i - 1) * time_train_one_epoch + (
total_num_steps - step - 1) * avg_step_time
else:
eta = ((num_epochs - i) * total_num_steps - step -
1) * avg_step_time
eta = ((num_epochs - i) * total_num_steps - step - 1
) * avg_step_time
if time_eval_one_epoch is not None:
eval_eta = (total_eval_times - i //
save_interval_epochs) * time_eval_one_epoch
eval_eta = (
total_eval_times - i // save_interval_epochs
) * time_eval_one_epoch
else:
eval_eta = (
total_eval_times - i // save_interval_epochs
......@@ -495,10 +501,11 @@ class BaseAPI:
logging.info(
"[TRAIN] Epoch={}/{}, Step={}/{}, {}, time_each_step={}s, eta={}"
.format(i + 1, num_epochs, step + 1, total_num_steps,
dict2str(step_metrics), round(
avg_step_time, 2), eta_str))
dict2str(step_metrics),
round(avg_step_time, 2), eta_str))
train_metrics = OrderedDict(
zip(list(self.train_outputs.keys()), np.mean(records, axis=0)))
zip(list(self.train_outputs.keys()), np.mean(
records, axis=0)))
logging.info('[TRAIN] Epoch {} finished, {} .'.format(
i + 1, dict2str(train_metrics)))
time_train_one_epoch = time.time() - epoch_start_time
......@@ -534,7 +541,8 @@ class BaseAPI:
if isinstance(v, np.ndarray):
if v.size > 1:
continue
log_writer.add_scalar("Metrics/Eval(Epoch): {}".format(k), v, i+1)
log_writer.add_scalar(
"Metrics/Eval(Epoch): {}".format(k), v, i + 1)
self.save_model(save_dir=current_save_dir)
time_eval_one_epoch = time.time() - eval_epoch_start_time
eval_epoch_start_time = time.time()
......
......@@ -40,8 +40,8 @@ class BaseClassifier(BaseAPI):
self.init_params = locals()
super(BaseClassifier, self).__init__('classifier')
if not hasattr(paddlex.cv.nets, str.lower(model_name)):
raise Exception(
"ERROR: There's no model named {}.".format(model_name))
raise Exception("ERROR: There's no model named {}.".format(
model_name))
self.model_name = model_name
self.labels = None
self.num_classes = num_classes
......@@ -218,15 +218,14 @@ class BaseClassifier(BaseAPI):
num_pad_samples = batch_size - num_samples
pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
images = np.concatenate([images, pad_images])
outputs = self.exe.run(
self.parallel_test_prog,
outputs = self.exe.run(self.parallel_test_prog,
feed={'image': images},
fetch_list=list(self.test_outputs.values()))
outputs = [outputs[0][:num_samples]]
true_labels.extend(labels)
pred_scores.extend(outputs[0].tolist())
logging.debug("[EVAL] Epoch={}, Step={}/{}".format(
epoch_id, step + 1, total_steps))
logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
1, total_steps))
pred_top1_label = np.argsort(pred_scores)[:, -1]
pred_topk_label = np.argsort(pred_scores)[:, -k:]
......@@ -263,8 +262,7 @@ class BaseClassifier(BaseAPI):
self.arrange_transforms(
transforms=self.test_transforms, mode='test')
im = self.test_transforms(img_file)
result = self.exe.run(
self.test_prog,
result = self.exe.run(self.test_prog,
feed={'image': im},
fetch_list=list(self.test_outputs.values()))
pred_label = np.argsort(result[0][0])[::-1][:true_topk]
......@@ -400,3 +398,9 @@ class ShuffleNetV2(BaseClassifier):
def __init__(self, num_classes=1000):
super(ShuffleNetV2, self).__init__(
model_name='ShuffleNetV2', num_classes=num_classes)
class HRNet_W18(BaseClassifier):
def __init__(self, num_classes=1000):
super(HRNet_W18, self).__init__(
model_name='HRNet_W18', num_classes=num_classes)
......@@ -190,11 +190,6 @@ class DeepLabv3p(BaseAPI):
if mode == 'train':
self.optimizer.minimize(model_out)
outputs['loss'] = model_out
elif mode == 'eval':
outputs['loss'] = model_out[0]
outputs['pred'] = model_out[1]
outputs['label'] = model_out[2]
outputs['mask'] = model_out[3]
else:
outputs['pred'] = model_out[0]
outputs['logit'] = model_out[1]
......@@ -336,15 +331,23 @@ class DeepLabv3p(BaseAPI):
for step, data in tqdm.tqdm(
enumerate(data_generator()), total=total_steps):
images = np.array([d[0] for d in data])
labels = np.array([d[1] for d in data])
_, _, im_h, im_w = images.shape
labels = list()
for d in data:
padding_label = np.zeros(
(1, im_h, im_w)).astype('int64') + self.ignore_index
padding_label[:, :im_h, :im_w] = d[1]
labels.append(padding_label)
labels = np.array(labels)
num_samples = images.shape[0]
if num_samples < batch_size:
num_pad_samples = batch_size - num_samples
pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
images = np.concatenate([images, pad_images])
feed_data = {'image': images}
outputs = self.exe.run(
self.parallel_test_prog,
outputs = self.exe.run(self.parallel_test_prog,
feed=feed_data,
fetch_list=list(self.test_outputs.values()),
return_numpy=True)
......@@ -364,8 +367,7 @@ class DeepLabv3p(BaseAPI):
metrics = OrderedDict(
zip(['miou', 'category_iou', 'macc', 'category_acc', 'kappa'],
[miou, category_iou, macc, category_acc,
conf_mat.kappa()]))
[miou, category_iou, macc, category_acc, conf_mat.kappa()]))
if return_details:
eval_details = {
'confusion_matrix': conf_mat.confusion_matrix.tolist()
......@@ -394,8 +396,7 @@ class DeepLabv3p(BaseAPI):
transforms=self.test_transforms, mode='test')
im, im_info = self.test_transforms(im_file)
im = np.expand_dims(im, axis=0)
result = self.exe.run(
self.test_prog,
result = self.exe.run(self.test_prog,
feed={'image': im},
fetch_list=list(self.test_outputs.values()))
pred = result[0]
......@@ -413,6 +414,6 @@ class DeepLabv3p(BaseAPI):
pred = pred[0:h, 0:w]
logit = logit[0:h, 0:w, :]
else:
raise Exception("Unexpected info '{}' in im_info".format(
info[0]))
raise Exception("Unexpected info '{}' in im_info".format(info[
0]))
return {'label_map': pred, 'score_map': logit}
......@@ -32,7 +32,7 @@ class FasterRCNN(BaseAPI):
Args:
num_classes (int): 包含了背景类的类别数。默认为81。
backbone (str): FasterRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50',
'ResNet50_vd', 'ResNet101', 'ResNet101_vd']。默认为'ResNet50'。
'ResNet50_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18']。默认为'ResNet50'。
with_fpn (bool): 是否使用FPN结构。默认为True。
aspect_ratios (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
anchor_sizes (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
......@@ -47,7 +47,8 @@ class FasterRCNN(BaseAPI):
self.init_params = locals()
super(FasterRCNN, self).__init__('detector')
backbones = [
'ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd'
'ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd',
'HRNet_W18'
]
assert backbone in backbones, "backbone should be one of {}".format(
backbones)
......@@ -79,6 +80,12 @@ class FasterRCNN(BaseAPI):
layers = 101
variant = 'd'
norm_type = 'affine_channel'
elif backbone_name == 'HRNet_W18':
backbone = paddlex.cv.nets.hrnet.HRNet(
width=18, freeze_norm=True, norm_decay=0., freeze_at=0)
if self.with_fpn is False:
self.with_fpn = True
return backbone
if self.with_fpn:
backbone = paddlex.cv.nets.resnet.ResNet(
norm_type='bn' if norm_type is None else norm_type,
......@@ -117,12 +124,12 @@ class FasterRCNN(BaseAPI):
model_out = model.build_net(inputs)
loss = model_out['loss']
self.optimizer.minimize(loss)
outputs = OrderedDict([('loss', model_out['loss']),
outputs = OrderedDict(
[('loss', model_out['loss']),
('loss_cls', model_out['loss_cls']),
('loss_bbox', model_out['loss_bbox']),
('loss_rpn_cls', model_out['loss_rpn_cls']),
('loss_rpn_bbox',
model_out['loss_rpn_bbox'])])
('loss_rpn_cls', model_out['loss_rpn_cls']), (
'loss_rpn_bbox', model_out['loss_rpn_bbox'])])
else:
outputs = model.build_net(inputs)
return inputs, outputs
......@@ -227,7 +234,9 @@ class FasterRCNN(BaseAPI):
# 构建训练、验证、测试网络
self.build_program()
fuse_bn = True
if self.with_fpn and self.backbone in ['ResNet18', 'ResNet50']:
if self.with_fpn and self.backbone in [
'ResNet18', 'ResNet50', 'HRNet_W18'
]:
fuse_bn = False
self.net_initialize(
startup_prog=fluid.default_startup_program(),
......@@ -310,8 +319,7 @@ class FasterRCNN(BaseAPI):
'im_info': im_infos,
'im_shape': im_shapes,
}
outputs = self.exe.run(
self.test_prog,
outputs = self.exe.run(self.test_prog,
feed=[feed_data],
fetch_list=list(self.test_outputs.values()),
return_numpy=False)
......@@ -339,13 +347,13 @@ class FasterRCNN(BaseAPI):
res['is_difficult'] = (np.array(res_is_difficult),
[res_is_difficult_lod])
results.append(res)
logging.debug("[EVAL] Epoch={}, Step={}/{}".format(
epoch_id, step + 1, total_steps))
logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
1, total_steps))
box_ap_stats, eval_details = eval_results(
results, metric, eval_dataset.coco_gt, with_background=True)
metrics = OrderedDict(
zip(['bbox_mmap' if metric == 'COCO' else 'bbox_map'],
box_ap_stats))
zip(['bbox_mmap'
if metric == 'COCO' else 'bbox_map'], box_ap_stats))
if return_details:
return metrics, eval_details
return metrics
......@@ -359,7 +367,8 @@ class FasterRCNN(BaseAPI):
Returns:
list: 预测结果列表,每个预测结果由预测框类别标签、
预测框类别名称、预测框坐标、预测框得分组成。
预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
预测框得分组成。
"""
if transforms is None and not hasattr(self, 'test_transforms'):
raise Exception("transforms need to be defined, now is None.")
......@@ -373,8 +382,7 @@ class FasterRCNN(BaseAPI):
im = np.expand_dims(im, axis=0)
im_resize_info = np.expand_dims(im_resize_info, axis=0)
im_shape = np.expand_dims(im_shape, axis=0)
outputs = self.exe.run(
self.test_prog,
outputs = self.exe.run(self.test_prog,
feed={
'image': im,
'im_info': im_resize_info,
......
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
import paddle.fluid as fluid
import paddlex
from collections import OrderedDict
from .deeplabv3p import DeepLabv3p
class HRNet(DeepLabv3p):
"""实现HRNet网络的构建并进行训练、评估、预测和模型导出。
Args:
num_classes (int): 类别数。
width (int): 高分辨率分支中特征层的通道数量。默认值为18。可选择取值为[18, 30, 32, 40, 44, 48, 60, 64]。
use_bce_loss (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。默认False。
use_dice_loss (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。
当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。默认False。
class_weight (list/str): 交叉熵损失函数各类损失的权重。当class_weight为list的时候,长度应为
num_classes。当class_weight为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重
自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,
即平时使用的交叉熵损失函数。
ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。默认255。
Raises:
ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
ValueError: class_weight为list, 但长度不等于num_class。
class_weight为str, 但class_weight.low()不等于dynamic。
TypeError: class_weight不为None时,其类型不是list或str。
"""
def __init__(self,
num_classes=2,
width=18,
use_bce_loss=False,
use_dice_loss=False,
class_weight=None,
ignore_index=255):
self.init_params = locals()
super(DeepLabv3p, self).__init__('segmenter')
# dice_loss或bce_loss只适用两类分割中
if num_classes > 2 and (use_bce_loss or use_dice_loss):
raise ValueError(
"dice loss and bce loss is only applicable to binary classfication"
)
if class_weight is not None:
if isinstance(class_weight, list):
if len(class_weight) != num_classes:
raise ValueError(
"Length of class_weight should be equal to number of classes"
)
elif isinstance(class_weight, str):
if class_weight.lower() != 'dynamic':
raise ValueError(
"if class_weight is string, must be dynamic!")
else:
raise TypeError(
'Expect class_weight is a list or string but receive {}'.
format(type(class_weight)))
self.num_classes = num_classes
self.width = width
self.use_bce_loss = use_bce_loss
self.use_dice_loss = use_dice_loss
self.class_weight = class_weight
self.ignore_index = ignore_index
self.labels = None
def build_net(self, mode='train'):
model = paddlex.cv.nets.segmentation.HRNet(
self.num_classes,
width=self.width,
mode=mode,
use_bce_loss=self.use_bce_loss,
use_dice_loss=self.use_dice_loss,
class_weight=self.class_weight,
ignore_index=self.ignore_index)
inputs = model.generate_inputs()
model_out = model.build_net(inputs)
outputs = OrderedDict()
if mode == 'train':
self.optimizer.minimize(model_out)
outputs['loss'] = model_out
elif mode == 'eval':
outputs['loss'] = model_out[0]
outputs['pred'] = model_out[1]
outputs['label'] = model_out[2]
outputs['mask'] = model_out[3]
else:
outputs['pred'] = model_out[0]
outputs['logit'] = model_out[1]
return inputs, outputs
def default_optimizer(self,
learning_rate,
num_epochs,
num_steps_each_epoch,
lr_decay_power=0.9):
decay_step = num_epochs * num_steps_each_epoch
lr_decay = fluid.layers.polynomial_decay(
learning_rate,
decay_step,
end_learning_rate=0,
power=lr_decay_power)
optimizer = fluid.optimizer.Momentum(
lr_decay,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(
regularization_coeff=5e-04))
return optimizer
def train(self,
num_epochs,
train_dataset,
train_batch_size=2,
eval_dataset=None,
save_interval_epochs=1,
log_interval_steps=2,
save_dir='output',
pretrain_weights='IMAGENET',
optimizer=None,
learning_rate=0.01,
lr_decay_power=0.9,
use_vdl=False,
sensitivities_file=None,
eval_metric_loss=0.05,
early_stop=False,
early_stop_patience=5,
resume_checkpoint=None):
"""训练。
Args:
num_epochs (int): 训练迭代轮数。
train_dataset (paddlex.datasets): 训练数据读取器。
train_batch_size (int): 训练数据batch大小。同时作为验证数据batch大小。默认2。
eval_dataset (paddlex.datasets): 评估数据读取器。
save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为1。
log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
save_dir (str): 模型保存路径。默认'output'。
pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
则自动下载在IMAGENET图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
optimizer (paddle.fluid.optimizer): 优化器。当改参数为None时,使用默认的优化器:使用
fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
learning_rate (float): 默认优化器的初始学习率。默认0.01。
lr_decay_power (float): 默认优化器学习率多项式衰减系数。默认0.9。
use_vdl (bool): 是否使用VisualDL进行可视化。默认False。
sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
early_stop (bool): 是否使用提前终止训练策略。默认值为False。
early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
连续下降或持平,则终止训练。默认值为5。
resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
Raises:
ValueError: 模型从inference model进行加载。
"""
return super(HRNet, self).train(
num_epochs, train_dataset, train_batch_size, eval_dataset,
save_interval_epochs, log_interval_steps, save_dir,
pretrain_weights, optimizer, learning_rate, lr_decay_power,
use_vdl, sensitivities_file, eval_metric_loss, early_stop,
early_stop_patience, resume_checkpoint)
......@@ -32,7 +32,7 @@ class MaskRCNN(FasterRCNN):
Args:
num_classes (int): 包含了背景类的类别数。默认为81。
backbone (str): MaskRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50',
'ResNet50_vd', 'ResNet101', 'ResNet101_vd']。默认为'ResNet50'。
'ResNet50_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18']。默认为'ResNet50'。
with_fpn (bool): 是否使用FPN结构。默认为True。
aspect_ratios (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
anchor_sizes (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
......@@ -46,7 +46,8 @@ class MaskRCNN(FasterRCNN):
anchor_sizes=[32, 64, 128, 256, 512]):
self.init_params = locals()
backbones = [
'ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd'
'ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd',
'HRNet_W18'
]
assert backbone in backbones, "backbone should be one of {}".format(
backbones)
......@@ -81,13 +82,13 @@ class MaskRCNN(FasterRCNN):
model_out = model.build_net(inputs)
loss = model_out['loss']
self.optimizer.minimize(loss)
outputs = OrderedDict([('loss', model_out['loss']),
outputs = OrderedDict(
[('loss', model_out['loss']),
('loss_cls', model_out['loss_cls']),
('loss_bbox', model_out['loss_bbox']),
('loss_mask', model_out['loss_mask']),
('loss_rpn_cls', model_out['loss_rpn_cls']),
('loss_rpn_bbox',
model_out['loss_rpn_bbox'])])
('loss_rpn_cls', model_out['loss_rpn_cls']), (
'loss_rpn_bbox', model_out['loss_rpn_bbox'])])
else:
outputs = model.build_net(inputs)
return inputs, outputs
......@@ -194,7 +195,9 @@ class MaskRCNN(FasterRCNN):
# 构建训练、验证、测试网络
self.build_program()
fuse_bn = True
if self.with_fpn and self.backbone in ['ResNet18', 'ResNet50']:
if self.with_fpn and self.backbone in [
'ResNet18', 'ResNet50', 'HRNet_W18'
]:
fuse_bn = False
self.net_initialize(
startup_prog=fluid.default_startup_program(),
......@@ -276,8 +279,7 @@ class MaskRCNN(FasterRCNN):
'im_info': im_infos,
'im_shape': im_shapes,
}
outputs = self.exe.run(
self.test_prog,
outputs = self.exe.run(self.test_prog,
feed=[feed_data],
fetch_list=list(self.test_outputs.values()),
return_numpy=False)
......@@ -292,8 +294,8 @@ class MaskRCNN(FasterRCNN):
res['im_shape'] = (im_shapes, [])
res['im_id'] = (np.array(res_im_id), [])
results.append(res)
logging.debug("[EVAL] Epoch={}, Step={}/{}".format(
epoch_id, step + 1, total_steps))
logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
1, total_steps))
ap_stats, eval_details = eval_results(
results,
......@@ -302,8 +304,8 @@ class MaskRCNN(FasterRCNN):
with_background=True,
resolution=self.mask_head_resolution)
if metric == 'VOC':
if isinstance(ap_stats[0], np.ndarray) and isinstance(
ap_stats[1], np.ndarray):
if isinstance(ap_stats[0], np.ndarray) and isinstance(ap_stats[1],
np.ndarray):
metrics = OrderedDict(
zip(['bbox_map', 'segm_map'],
[ap_stats[0][1], ap_stats[1][1]]))
......@@ -311,8 +313,8 @@ class MaskRCNN(FasterRCNN):
metrics = OrderedDict(
zip(['bbox_map', 'segm_map'], [0.0, 0.0]))
elif metric == 'COCO':
if isinstance(ap_stats[0], np.ndarray) and isinstance(
ap_stats[1], np.ndarray):
if isinstance(ap_stats[0], np.ndarray) and isinstance(ap_stats[1],
np.ndarray):
metrics = OrderedDict(
zip(['bbox_mmap', 'segm_mmap'],
[ap_stats[0][0], ap_stats[1][0]]))
......@@ -331,7 +333,9 @@ class MaskRCNN(FasterRCNN):
transforms (paddlex.det.transforms): 数据预处理操作。
Returns:
dict: 预测结果列表,每个预测结果由预测框类别标签、预测框类别名称、预测框坐标、预测框内的二值图、
dict: 预测结果列表,每个预测结果由预测框类别标签、预测框类别名称、
预测框坐标(坐标格式为[xmin, ymin, w, h])、
原图大小的预测二值图(1表示预测框类别,0表示背景类)、
预测框得分组成。
"""
if transforms is None and not hasattr(self, 'test_transforms'):
......@@ -346,8 +350,7 @@ class MaskRCNN(FasterRCNN):
im = np.expand_dims(im, axis=0)
im_resize_info = np.expand_dims(im_resize_info, axis=0)
im_shape = np.expand_dims(im_shape, axis=0)
outputs = self.exe.run(
self.test_prog,
outputs = self.exe.run(self.test_prog,
feed={
'image': im,
'im_info': im_resize_info,
......@@ -368,8 +371,8 @@ class MaskRCNN(FasterRCNN):
import pycocotools.mask as mask_util
for index, xywh_res in enumerate(xywh_results):
del xywh_res['image_id']
xywh_res['mask'] = mask_util.decode(
segm_results[index]['segmentation'])
xywh_res['mask'] = mask_util.decode(segm_results[index][
'segmentation'])
xywh_res['category'] = self.labels[xywh_res['category_id']]
results.append(xywh_res)
return results
......@@ -56,6 +56,20 @@ image_pretrain = {
'https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar',
'ShuffleNetV2':
'https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar',
'HRNet_W18':
'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar',
'HRNet_W30':
'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar',
'HRNet_W32':
'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar',
'HRNet_W40':
'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar',
'HRNet_W48':
'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar',
'HRNet_W60':
'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W60_C_pretrained.tar',
'HRNet_W64':
'https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar',
}
coco_pretrain = {
......
......@@ -306,8 +306,7 @@ class YOLOv3(BaseAPI):
images = np.array([d[0] for d in data])
im_sizes = np.array([d[1] for d in data])
feed_data = {'image': images, 'im_size': im_sizes}
outputs = self.exe.run(
self.test_prog,
outputs = self.exe.run(self.test_prog,
feed=[feed_data],
fetch_list=list(self.test_outputs.values()),
return_numpy=False)
......@@ -326,13 +325,13 @@ class YOLOv3(BaseAPI):
res['gt_label'] = (res_gt_label, [])
res['is_difficult'] = (res_is_difficult, [])
results.append(res)
logging.debug("[EVAL] Epoch={}, Step={}/{}".format(
epoch_id, step + 1, total_steps))
logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
1, total_steps))
box_ap_stats, eval_details = eval_results(
results, metric, eval_dataset.coco_gt, with_background=False)
evaluate_metrics = OrderedDict(
zip(['bbox_mmap' if metric == 'COCO' else 'bbox_map'],
box_ap_stats))
zip(['bbox_mmap'
if metric == 'COCO' else 'bbox_map'], box_ap_stats))
if return_details:
return evaluate_metrics, eval_details
return evaluate_metrics
......@@ -346,7 +345,8 @@ class YOLOv3(BaseAPI):
Returns:
list: 预测结果列表,每个预测结果由预测框类别标签、
预测框类别名称、预测框坐标、预测框得分组成。
预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
预测框得分组成。
"""
if transforms is None and not hasattr(self, 'test_transforms'):
raise Exception("transforms need to be defined, now is None.")
......@@ -359,12 +359,9 @@ class YOLOv3(BaseAPI):
im, im_size = self.test_transforms(img_file)
im = np.expand_dims(im, axis=0)
im_size = np.expand_dims(im_size, axis=0)
outputs = self.exe.run(
self.test_prog,
feed={
'image': im,
'im_size': im_size
},
outputs = self.exe.run(self.test_prog,
feed={'image': im,
'im_size': im_size},
fetch_list=list(self.test_outputs.values()),
return_numpy=False)
res = {
......
......@@ -23,6 +23,7 @@ from .segmentation import DeepLabv3p
from .xception import Xception
from .densenet import DenseNet
from .shufflenet_v2 import ShuffleNetV2
from .hrnet import HRNet
def resnet18(input, num_classes=1000):
......@@ -51,14 +52,20 @@ def resnet50_vd(input, num_classes=1000):
def resnet50_vd_ssld(input, num_classes=1000):
model = ResNet(layers=50, num_classes=num_classes,
variant='d', lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3])
model = ResNet(
layers=50,
num_classes=num_classes,
variant='d',
lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3])
return model(input)
def resnet101_vd_ssld(input, num_classes=1000):
model = ResNet(layers=101, num_classes=num_classes,
variant='d', lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3])
model = ResNet(
layers=101,
num_classes=num_classes,
variant='d',
lr_mult_list=[1.0, 0.1, 0.2, 0.2, 0.3])
return model(input)
......@@ -93,13 +100,17 @@ def mobilenetv3_large(input, num_classes=1000):
def mobilenetv3_small_ssld(input, num_classes=1000):
model = MobileNetV3(num_classes=num_classes, model_name='small',
model = MobileNetV3(
num_classes=num_classes,
model_name='small',
lr_mult_list=[0.25, 0.25, 0.5, 0.5, 0.75])
return model(input)
def mobilenetv3_large_ssld(input, num_classes=1000):
model = MobileNetV3(num_classes=num_classes, model_name='large',
model = MobileNetV3(
num_classes=num_classes,
model_name='large',
lr_mult_list=[0.25, 0.25, 0.5, 0.5, 0.75])
return model(input)
......@@ -133,6 +144,12 @@ def densenet201(input, num_classes=1000):
model = DenseNet(layers=201, num_classes=num_classes)
return model(input)
def shufflenetv2(input, num_classes=1000):
model = ShuffleNetV2(num_classes=num_classes)
return model(input)
def hrnet_w18(input, num_classes=1000):
model = HRNet(width=18, num_classes=num_classes)
return model(input)
......@@ -68,13 +68,14 @@ class DarkNet(object):
bias_attr=False)
bn_name = name + ".bn"
if self.num_classes:
regularizer = None
else:
regularizer = L2Decay(float(self.norm_decay))
bn_param_attr = ParamAttr(
regularizer=L2Decay(float(self.norm_decay)),
name=bn_name + '.scale')
regularizer=regularizer, name=bn_name + '.scale')
bn_bias_attr = ParamAttr(
regularizer=L2Decay(float(self.norm_decay)),
name=bn_name + '.offset')
regularizer=regularizer, name=bn_name + '.offset')
out = fluid.layers.batch_norm(
input=conv,
......
......@@ -21,7 +21,7 @@ import copy
from paddle import fluid
from .fpn import FPN
from .fpn import (FPN, HRFPN)
from .rpn_head import (RPNHead, FPNRPNHead)
from .roi_extractor import (RoIAlign, FPNRoIAlign)
from .bbox_head import (BBoxHead, TwoFCHead)
......@@ -82,6 +82,11 @@ class FasterRCNN(object):
self.backbone = backbone
self.mode = mode
if with_fpn and fpn is None:
if self.backbone.__class__.__name__.startswith('HRNet'):
fpn = HRFPN()
fpn.min_level = 2
fpn.max_level = 6
else:
fpn = FPN()
self.fpn = fpn
self.num_classes = num_classes
......
......@@ -23,7 +23,7 @@ from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Xavier
from paddle.fluid.regularizer import L2Decay
__all__ = ['FPN']
__all__ = ['FPN', 'HRFPN']
def ConvNorm(input,
......@@ -219,8 +219,8 @@ class FPN(object):
body_name = body_name_list[i]
body_input = body_dict[body_name]
top_output = self.fpn_inner_output[i - 1]
fpn_inner_single = self._add_topdown_lateral(
body_name, body_input, top_output)
fpn_inner_single = self._add_topdown_lateral(body_name, body_input,
top_output)
self.fpn_inner_output[i] = fpn_inner_single
fpn_dict = {}
fpn_name_list = []
......@@ -293,3 +293,107 @@ class FPN(object):
spatial_scale.insert(0, spatial_scale[0] * 0.5)
res_dict = OrderedDict([(k, fpn_dict[k]) for k in fpn_name_list])
return res_dict, spatial_scale
class HRFPN(object):
"""
HRNet, see https://arxiv.org/abs/1908.07919
Args:
num_chan (int): number of feature channels
pooling_type (str): pooling type of downsampling
share_conv (bool): whethet to share conv for different layers' reduction
spatial_scale (list): feature map scaling factor
"""
def __init__(
self,
num_chan=256,
pooling_type="avg",
share_conv=False,
spatial_scale=[1. / 64, 1. / 32, 1. / 16, 1. / 8, 1. / 4], ):
self.num_chan = num_chan
self.pooling_type = pooling_type
self.share_conv = share_conv
self.spatial_scale = spatial_scale
def get_output(self, body_dict):
num_out = len(self.spatial_scale)
body_name_list = list(body_dict.keys())
num_backbone_stages = len(body_name_list)
outs = []
outs.append(body_dict[body_name_list[0]])
# resize
for i in range(1, len(body_dict)):
resized = self.resize_input_tensor(body_dict[body_name_list[i]],
outs[0], 2**i)
outs.append(resized)
# concat
out = fluid.layers.concat(outs, axis=1)
# reduction
out = fluid.layers.conv2d(
input=out,
num_filters=self.num_chan,
filter_size=1,
stride=1,
padding=0,
param_attr=ParamAttr(name='hrfpn_reduction_weights'),
bias_attr=False)
# conv
outs = [out]
for i in range(1, num_out):
outs.append(
self.pooling(
out,
size=2**i,
stride=2**i,
pooling_type=self.pooling_type))
outputs = []
for i in range(num_out):
conv_name = "shared_fpn_conv" if self.share_conv else "shared_fpn_conv_" + str(
i)
conv = fluid.layers.conv2d(
input=outs[i],
num_filters=self.num_chan,
filter_size=3,
stride=1,
padding=1,
param_attr=ParamAttr(name=conv_name + "_weights"),
bias_attr=False)
outputs.append(conv)
for idx in range(0, num_out - len(body_name_list)):
body_name_list.append("fpn_res5_sum_subsampled_{}x".format(2**(
idx + 1)))
outputs = outputs[::-1]
body_name_list = body_name_list[::-1]
res_dict = OrderedDict([(body_name_list[k], outputs[k])
for k in range(len(body_name_list))])
return res_dict, self.spatial_scale
def resize_input_tensor(self, body_input, ref_output, scale):
shape = fluid.layers.shape(ref_output)
shape_hw = fluid.layers.slice(shape, axes=[0], starts=[2], ends=[4])
out_shape_ = shape_hw
out_shape = fluid.layers.cast(out_shape_, dtype='int32')
out_shape.stop_gradient = True
body_output = fluid.layers.resize_bilinear(
body_input, scale=scale, out_shape=out_shape)
return body_output
def pooling(self, input, size, stride, pooling_type):
pool = fluid.layers.pool2d(
input=input,
pool_size=size,
pool_stride=stride,
pool_type=pooling_type)
return pool
......@@ -21,7 +21,7 @@ import copy
import paddle.fluid as fluid
from .fpn import FPN
from .fpn import (FPN, HRFPN)
from .rpn_head import (RPNHead, FPNRPNHead)
from .roi_extractor import (RoIAlign, FPNRoIAlign)
from .bbox_head import (BBoxHead, TwoFCHead)
......@@ -92,8 +92,12 @@ class MaskRCNN(object):
self.backbone = backbone
self.mode = mode
if with_fpn and fpn is None:
fpn = FPN(
num_chan=num_chan,
if self.backbone.__class__.__name__.startswith('HRNet'):
fpn = HRFPN()
fpn.min_level = 2
fpn.max_level = 6
else:
fpn = FPN(num_chan=num_chan,
min_level=min_level,
max_level=max_level,
spatial_scale=spatial_scale)
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import OrderedDict
from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.framework import Variable
from paddle.fluid.regularizer import L2Decay
from numbers import Integral
from paddle.fluid.initializer import MSRA
import math
__all__ = ['HRNet']
class HRNet(object):
def __init__(self,
width=40,
has_se=False,
freeze_at=0,
norm_type='bn',
freeze_norm=False,
norm_decay=0.,
feature_maps=[2, 3, 4, 5],
num_classes=None):
super(HRNet, self).__init__()
if isinstance(feature_maps, Integral):
feature_maps = [feature_maps]
assert 0 <= freeze_at <= 4, "freeze_at should be 0, 1, 2, 3 or 4"
assert len(feature_maps) > 0, "need one or more feature maps"
assert norm_type in ['bn', 'sync_bn']
self.width = width
self.has_se = has_se
self.channels = {
18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]],
}
self.freeze_at = freeze_at
self.norm_type = norm_type
self.norm_decay = norm_decay
self.freeze_norm = freeze_norm
self.feature_maps = feature_maps
self.num_classes = num_classes
self.end_points = []
return
def net(self, input, class_dim=1000):
width = self.width
channels_2, channels_3, channels_4 = self.channels[width]
num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3
x = self.conv_bn_layer(
input=input,
filter_size=3,
num_filters=64,
stride=2,
if_act=True,
name='layer1_1')
x = self.conv_bn_layer(
input=x,
filter_size=3,
num_filters=64,
stride=2,
if_act=True,
name='layer1_2')
la1 = self.layer1(x, name='layer2')
tr1 = self.transition_layer([la1], [256], channels_2, name='tr1')
st2 = self.stage(tr1, num_modules_2, channels_2, name='st2')
tr2 = self.transition_layer(st2, channels_2, channels_3, name='tr2')
st3 = self.stage(tr2, num_modules_3, channels_3, name='st3')
tr3 = self.transition_layer(st3, channels_3, channels_4, name='tr3')
st4 = self.stage(tr3, num_modules_4, channels_4, name='st4')
# classification
if self.num_classes:
last_cls = self.last_cls_out(x=st4, name='cls_head')
y = last_cls[0]
last_num_filters = [256, 512, 1024]
for i in range(3):
y = fluid.layers.elementwise_add(
last_cls[i + 1],
self.conv_bn_layer(
input=y,
filter_size=3,
num_filters=last_num_filters[i],
stride=2,
name='cls_head_add' + str(i + 1)))
y = self.conv_bn_layer(
input=y,
filter_size=1,
num_filters=2048,
stride=1,
name='cls_head_last_conv')
pool = fluid.layers.pool2d(
input=y, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(
input=pool,
size=class_dim,
param_attr=ParamAttr(
name='fc_weights',
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name='fc_offset'))
return out
# segmentation
if self.feature_maps == "stage4":
return st4
self.end_points = st4
return st4[-1]
def layer1(self, input, name=None):
conv = input
for i in range(4):
conv = self.bottleneck_block(
conv,
num_filters=64,
downsample=True if i == 0 else False,
name=name + '_' + str(i + 1))
return conv
def transition_layer(self, x, in_channels, out_channels, name=None):
num_in = len(in_channels)
num_out = len(out_channels)
out = []
for i in range(num_out):
if i < num_in:
if in_channels[i] != out_channels[i]:
residual = self.conv_bn_layer(
x[i],
filter_size=3,
num_filters=out_channels[i],
name=name + '_layer_' + str(i + 1))
out.append(residual)
else:
out.append(x[i])
else:
residual = self.conv_bn_layer(
x[-1],
filter_size=3,
num_filters=out_channels[i],
stride=2,
name=name + '_layer_' + str(i + 1))
out.append(residual)
return out
def branches(self, x, block_num, channels, name=None):
out = []
for i in range(len(channels)):
residual = x[i]
for j in range(block_num):
residual = self.basic_block(
residual,
channels[i],
name=name + '_branch_layer_' + str(i + 1) + '_' +
str(j + 1))
out.append(residual)
return out
def fuse_layers(self, x, channels, multi_scale_output=True, name=None):
out = []
for i in range(len(channels) if multi_scale_output else 1):
residual = x[i]
if self.feature_maps == "stage4":
shape = fluid.layers.shape(residual)
width = shape[-1]
height = shape[-2]
for j in range(len(channels)):
if j > i:
y = self.conv_bn_layer(
x[j],
filter_size=1,
num_filters=channels[i],
if_act=False,
name=name + '_layer_' + str(i + 1) + '_' + str(j + 1))
if self.feature_maps == "stage4":
y = fluid.layers.resize_bilinear(
input=y, out_shape=[height, width])
else:
y = fluid.layers.resize_nearest(
input=y, scale=2**(j - i))
residual = fluid.layers.elementwise_add(
x=residual, y=y, act=None)
elif j < i:
y = x[j]
for k in range(i - j):
if k == i - j - 1:
y = self.conv_bn_layer(
y,
filter_size=3,
num_filters=channels[i],
stride=2,
if_act=False,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1))
else:
y = self.conv_bn_layer(
y,
filter_size=3,
num_filters=channels[j],
stride=2,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1))
residual = fluid.layers.elementwise_add(
x=residual, y=y, act=None)
residual = fluid.layers.relu(residual)
out.append(residual)
return out
def high_resolution_module(self,
x,
channels,
multi_scale_output=True,
name=None):
residual = self.branches(x, 4, channels, name=name)
out = self.fuse_layers(
residual,
channels,
multi_scale_output=multi_scale_output,
name=name)
return out
def stage(self,
x,
num_modules,
channels,
multi_scale_output=True,
name=None):
out = x
for i in range(num_modules):
if i == num_modules - 1 and multi_scale_output == False:
out = self.high_resolution_module(
out,
channels,
multi_scale_output=False,
name=name + '_' + str(i + 1))
else:
out = self.high_resolution_module(
out, channels, name=name + '_' + str(i + 1))
return out
def last_cls_out(self, x, name=None):
out = []
num_filters_list = [32, 64, 128, 256]
for i in range(len(x)):
out.append(
self.bottleneck_block(
input=x[i],
num_filters=num_filters_list[i],
name=name + 'conv_' + str(i + 1),
downsample=True))
return out
def basic_block(self,
input,
num_filters,
stride=1,
downsample=False,
name=None):
residual = input
conv = self.conv_bn_layer(
input=input,
filter_size=3,
num_filters=num_filters,
stride=stride,
name=name + '_conv1')
conv = self.conv_bn_layer(
input=conv,
filter_size=3,
num_filters=num_filters,
if_act=False,
name=name + '_conv2')
if downsample:
residual = self.conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_filters,
if_act=False,
name=name + '_downsample')
if self.has_se:
conv = self.squeeze_excitation(
input=conv,
num_channels=num_filters,
reduction_ratio=16,
name=name + '_fc')
return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')
def bottleneck_block(self,
input,
num_filters,
stride=1,
downsample=False,
name=None):
residual = input
conv = self.conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_filters,
name=name + '_conv1')
conv = self.conv_bn_layer(
input=conv,
filter_size=3,
num_filters=num_filters,
stride=stride,
name=name + '_conv2')
conv = self.conv_bn_layer(
input=conv,
filter_size=1,
num_filters=num_filters * 4,
if_act=False,
name=name + '_conv3')
if downsample:
residual = self.conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_filters * 4,
if_act=False,
name=name + '_downsample')
if self.has_se:
conv = self.squeeze_excitation(
input=conv,
num_channels=num_filters * 4,
reduction_ratio=16,
name=name + '_fc')
return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')
def squeeze_excitation(self,
input,
num_channels,
reduction_ratio,
name=None):
pool = fluid.layers.pool2d(
input=input, pool_size=0, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
squeeze = fluid.layers.fc(
input=pool,
size=num_channels / reduction_ratio,
act='relu',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + '_sqz_weights'),
bias_attr=ParamAttr(name=name + '_sqz_offset'))
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
excitation = fluid.layers.fc(
input=squeeze,
size=num_channels,
act='sigmoid',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + '_exc_weights'),
bias_attr=ParamAttr(name=name + '_exc_offset'))
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
return scale
def conv_bn_layer(self,
input,
filter_size,
num_filters,
stride=1,
padding=1,
num_groups=1,
if_act=True,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=num_groups,
act=None,
param_attr=ParamAttr(
initializer=MSRA(), name=name + '_weights'),
bias_attr=False)
bn_name = name + '_bn'
bn = self._bn(input=conv, bn_name=bn_name)
if if_act:
bn = fluid.layers.relu(bn)
return bn
def _bn(self, input, act=None, bn_name=None):
norm_lr = 0. if self.freeze_norm else 1.
norm_decay = self.norm_decay
if self.num_classes or self.feature_maps == "stage4":
regularizer = None
pattr_initializer = fluid.initializer.Constant(1.0)
battr_initializer = fluid.initializer.Constant(0.0)
else:
regularizer = L2Decay(norm_decay)
pattr_initializer = None
battr_initializer = None
pattr = ParamAttr(
name=bn_name + '_scale',
learning_rate=norm_lr,
regularizer=regularizer,
initializer=pattr_initializer)
battr = ParamAttr(
name=bn_name + '_offset',
learning_rate=norm_lr,
regularizer=regularizer,
initializer=battr_initializer)
global_stats = True if self.freeze_norm else False
out = fluid.layers.batch_norm(
input=input,
act=act,
name=bn_name + '.output.1',
param_attr=pattr,
bias_attr=battr,
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance',
use_global_stats=global_stats)
scale = fluid.framework._get_var(pattr.name)
bias = fluid.framework._get_var(battr.name)
if self.freeze_norm:
scale.stop_gradient = True
bias.stop_gradient = True
return out
def __call__(self, input):
assert isinstance(input, Variable)
if isinstance(self.feature_maps, (list, tuple)):
assert not (set(self.feature_maps) - set([2, 3, 4, 5])), \
"feature maps {} not in [2, 3, 4, 5]".format(self.feature_maps)
res_endpoints = []
res = input
feature_maps = self.feature_maps
out = self.net(input)
if self.num_classes or self.feature_maps == "stage4":
return out
for i in feature_maps:
res = self.end_points[i - 2]
if i in self.feature_maps:
res_endpoints.append(res)
if self.freeze_at >= i:
res.stop_gradient = True
return OrderedDict([('res{}_sum'.format(self.feature_maps[idx]), feat)
for idx, feat in enumerate(res_endpoints)])
......@@ -79,10 +79,14 @@ class MobileNetV1(object):
bn_name = name + "_bn"
norm_decay = self.norm_decay
if self.num_classes:
regularizer = None
else:
regularizer = L2Decay(norm_decay)
bn_param_attr = ParamAttr(
regularizer=L2Decay(norm_decay), name=bn_name + '_scale')
regularizer=regularizer, name=bn_name + '_scale')
bn_bias_attr = ParamAttr(
regularizer=L2Decay(norm_decay), name=bn_name + '_offset')
regularizer=regularizer, name=bn_name + '_offset')
return fluid.layers.batch_norm(
input=conv,
act=act,
......@@ -189,11 +193,11 @@ class MobileNetV1(object):
if self.num_classes:
out = fluid.layers.pool2d(
input=out, pool_type='avg', global_pooling=True)
output = fluid.layers.fc(
input=out,
output = fluid.layers.fc(input=out,
size=self.num_classes,
param_attr=ParamAttr(
initializer=fluid.initializer.MSRA(), name="fc7_weights"),
initializer=fluid.initializer.MSRA(),
name="fc7_weights"),
bias_attr=ParamAttr(name="fc7_offset"))
return output
......
......@@ -31,6 +31,7 @@ class MobileNetV3():
with_extra_blocks (bool): if extra blocks should be added.
extra_block_filters (list): number of filter for each extra block.
"""
def __init__(self,
scale=1.0,
model_name='small',
......@@ -113,10 +114,16 @@ class MobileNetV3():
lr_idx = self.curr_stage // self.lr_interval
lr_idx = min(lr_idx, len(self.lr_mult_list) - 1)
lr_mult = self.lr_mult_list[lr_idx]
conv_param_attr = ParamAttr(name=name + '_weights',
if self.num_classes:
regularizer = None
else:
regularizer = L2Decay(self.conv_decay)
conv_param_attr = ParamAttr(
name=name + '_weights',
learning_rate=lr_mult,
regularizer=L2Decay(self.conv_decay))
conv = fluid.layers.conv2d(input=input,
regularizer=regularizer)
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
......@@ -127,11 +134,12 @@ class MobileNetV3():
param_attr=conv_param_attr,
bias_attr=False)
bn_name = name + '_bn'
bn_param_attr = ParamAttr(name=bn_name + "_scale",
regularizer=L2Decay(self.norm_decay))
bn_bias_attr = ParamAttr(name=bn_name + "_offset",
regularizer=L2Decay(self.norm_decay))
bn = fluid.layers.batch_norm(input=conv,
bn_param_attr = ParamAttr(
name=bn_name + "_scale", regularizer=L2Decay(self.norm_decay))
bn_bias_attr = ParamAttr(
name=bn_name + "_offset", regularizer=L2Decay(self.norm_decay))
bn = fluid.layers.batch_norm(
input=conv,
param_attr=bn_param_attr,
bias_attr=bn_bias_attr,
moving_mean_name=bn_name + '_mean',
......@@ -154,10 +162,8 @@ class MobileNetV3():
lr_mult = self.lr_mult_list[lr_idx]
num_mid_filter = int(num_out_filter // ratio)
pool = fluid.layers.pool2d(input=input,
pool_type='avg',
global_pooling=True,
use_cudnn=False)
pool = fluid.layers.pool2d(
input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
conv1 = fluid.layers.conv2d(
input=pool,
filter_size=1,
......@@ -191,7 +197,8 @@ class MobileNetV3():
use_se=False,
name=None):
input_data = input
conv0 = self._conv_bn_layer(input=input,
conv0 = self._conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_mid_filter,
stride=1,
......@@ -201,7 +208,8 @@ class MobileNetV3():
name=name + '_expand')
if self.block_stride == 16 and stride == 2:
self.end_points.append(conv0)
conv1 = self._conv_bn_layer(input=conv0,
conv1 = self._conv_bn_layer(
input=conv0,
filter_size=filter_size,
num_filters=num_mid_filter,
stride=stride,
......@@ -213,11 +221,11 @@ class MobileNetV3():
name=name + '_depthwise')
if use_se:
conv1 = self._se_block(input=conv1,
num_out_filter=num_mid_filter,
name=name + '_se')
conv1 = self._se_block(
input=conv1, num_out_filter=num_mid_filter, name=name + '_se')
conv2 = self._conv_bn_layer(input=conv1,
conv2 = self._conv_bn_layer(
input=conv1,
filter_size=1,
num_filters=num_out_filter,
stride=1,
......@@ -227,7 +235,8 @@ class MobileNetV3():
if num_in_filter != num_out_filter or stride != 1:
return conv2
else:
return fluid.layers.elementwise_add(x=input_data, y=conv2, act=None)
return fluid.layers.elementwise_add(
x=input_data, y=conv2, act=None)
def _extra_block_dw(self,
input,
......@@ -235,14 +244,16 @@ class MobileNetV3():
num_filters2,
stride,
name=None):
pointwise_conv = self._conv_bn_layer(input=input,
pointwise_conv = self._conv_bn_layer(
input=input,
filter_size=1,
num_filters=int(num_filters1),
stride=1,
padding="SAME",
act='relu6',
name=name + "_extra1")
depthwise_conv = self._conv_bn_layer(input=pointwise_conv,
depthwise_conv = self._conv_bn_layer(
input=pointwise_conv,
filter_size=3,
num_filters=int(num_filters2),
stride=stride,
......@@ -251,7 +262,8 @@ class MobileNetV3():
act='relu6',
use_cudnn=False,
name=name + "_extra2_dw")
normal_conv = self._conv_bn_layer(input=depthwise_conv,
normal_conv = self._conv_bn_layer(
input=depthwise_conv,
filter_size=1,
num_filters=int(num_filters2),
stride=1,
......@@ -282,7 +294,8 @@ class MobileNetV3():
self.block_stride *= layer_cfg[5]
if layer_cfg[5] == 2:
blocks.append(conv)
conv = self._residual_unit(input=conv,
conv = self._residual_unit(
input=conv,
num_in_filter=inplanes,
num_mid_filter=int(scale * layer_cfg[1]),
num_out_filter=int(scale * layer_cfg[2]),
......@@ -298,7 +311,8 @@ class MobileNetV3():
blocks.append(conv)
if self.num_classes:
conv = self._conv_bn_layer(input=conv,
conv = self._conv_bn_layer(
input=conv,
filter_size=1,
num_filters=int(scale * self.cls_ch_squeeze),
stride=1,
......@@ -308,7 +322,8 @@ class MobileNetV3():
act='hard_swish',
name='conv_last')
conv = fluid.layers.pool2d(input=conv,
conv = fluid.layers.pool2d(
input=conv,
pool_type='avg',
global_pooling=True,
use_cudnn=False)
......@@ -333,7 +348,8 @@ class MobileNetV3():
return blocks
# extra block
conv_extra = self._conv_bn_layer(conv,
conv_extra = self._conv_bn_layer(
conv,
filter_size=1,
num_filters=int(scale * cfg[-1][1]),
stride=1,
......
......@@ -135,8 +135,10 @@ class ResNet(object):
filter_size=filter_size,
stride=stride,
padding=padding,
param_attr=ParamAttr(initializer=Constant(0.0), name=name + ".w_0"),
bias_attr=ParamAttr(initializer=Constant(0.0), name=name + ".b_0"),
param_attr=ParamAttr(
initializer=Constant(0.0), name=name + ".w_0"),
bias_attr=ParamAttr(
initializer=Constant(0.0), name=name + ".b_0"),
act=act,
name=name)
return out
......@@ -151,7 +153,8 @@ class ResNet(object):
name=None,
dcn_v2=False,
use_lr_mult_list=False):
lr_mult = self.lr_mult_list[self.curr_stage] if use_lr_mult_list else 1.0
lr_mult = self.lr_mult_list[
self.curr_stage] if use_lr_mult_list else 1.0
_name = self.prefix_name + name if self.prefix_name != '' else name
if not dcn_v2:
conv = fluid.layers.conv2d(
......@@ -162,8 +165,8 @@ class ResNet(object):
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=_name + "_weights",
learning_rate=lr_mult),
param_attr=ParamAttr(
name=_name + "_weights", learning_rate=lr_mult),
bias_attr=False,
name=_name + '.conv2d.output.1')
else:
......@@ -202,14 +205,18 @@ class ResNet(object):
norm_lr = 0. if self.freeze_norm else lr_mult
norm_decay = self.norm_decay
if self.num_classes:
regularizer = None
else:
regularizer = L2Decay(norm_decay)
pattr = ParamAttr(
name=bn_name + '_scale',
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
regularizer=regularizer)
battr = ParamAttr(
name=bn_name + '_offset',
learning_rate=norm_lr,
regularizer=L2Decay(norm_decay))
regularizer=regularizer)
if self.norm_type in ['bn', 'sync_bn']:
global_stats = True if self.freeze_norm else False
......@@ -262,8 +269,8 @@ class ResNet(object):
pool_padding=0,
ceil_mode=True,
pool_type='avg')
return self._conv_norm(input, ch_out, 1, 1, name=name,
use_lr_mult_list=True)
return self._conv_norm(
input, ch_out, 1, 1, name=name, use_lr_mult_list=True)
return self._conv_norm(input, ch_out, 1, stride, name=name)
else:
return input
......
......@@ -14,5 +14,6 @@
from .unet import UNet
from .deeplabv3p import DeepLabv3p
from .hrnet import HRNet
from .model_utils import libs
from .model_utils import loss
......@@ -135,7 +135,8 @@ class DeepLabv3p(object):
param_attr = fluid.ParamAttr(
name=name_scope + 'weights',
regularizer=None,
initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
initializer=fluid.initializer.TruncatedNormal(
loc=0.0, scale=0.06))
with scope('encoder'):
channel = 256
with scope("image_pool"):
......@@ -151,8 +152,8 @@ class DeepLabv3p(object):
padding=0,
param_attr=param_attr))
input_shape = fluid.layers.shape(input)
image_avg = fluid.layers.resize_bilinear(
image_avg, input_shape[2:])
image_avg = fluid.layers.resize_bilinear(image_avg,
input_shape[2:])
with scope("aspp0"):
aspp0 = bn_relu(
......@@ -244,7 +245,8 @@ class DeepLabv3p(object):
param_attr = fluid.ParamAttr(
name=name_scope + 'weights',
regularizer=None,
initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
initializer=fluid.initializer.TruncatedNormal(
loc=0.0, scale=0.06))
with scope('decoder'):
with scope('concat'):
decode_shortcut = bn_relu(
......@@ -326,9 +328,6 @@ class DeepLabv3p(object):
if self.mode == 'train':
inputs['label'] = fluid.data(
dtype='int32', shape=[None, 1, None, None], name='label')
elif self.mode == 'eval':
inputs['label'] = fluid.data(
dtype='int32', shape=[None, 1, None, None], name='label')
return inputs
def build_net(self, inputs):
......@@ -351,7 +350,8 @@ class DeepLabv3p(object):
name=name_scope + 'weights',
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0),
initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
initializer=fluid.initializer.TruncatedNormal(
loc=0.0, scale=0.01))
with scope('logit'):
with fluid.name_scope('last_conv'):
logit = conv(
......
# coding: utf8
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import OrderedDict
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from .model_utils.libs import sigmoid_to_softmax
from .model_utils.loss import softmax_with_loss
from .model_utils.loss import dice_loss
from .model_utils.loss import bce_loss
import paddlex
import paddlex.utils.logging as logging
class HRNet(object):
def __init__(self,
num_classes,
mode='train',
width=18,
use_bce_loss=False,
use_dice_loss=False,
class_weight=None,
ignore_index=255):
# dice_loss或bce_loss只适用两类分割中
if num_classes > 2 and (use_bce_loss or use_dice_loss):
raise ValueError(
"dice loss and bce loss is only applicable to binary classfication"
)
if class_weight is not None:
if isinstance(class_weight, list):
if len(class_weight) != num_classes:
raise ValueError(
"Length of class_weight should be equal to number of classes"
)
elif isinstance(class_weight, str):
if class_weight.lower() != 'dynamic':
raise ValueError(
"if class_weight is string, must be dynamic!")
else:
raise TypeError(
'Expect class_weight is a list or string but receive {}'.
format(type(class_weight)))
self.num_classes = num_classes
self.mode = mode
self.use_bce_loss = use_bce_loss
self.use_dice_loss = use_dice_loss
self.class_weight = class_weight
self.ignore_index = ignore_index
self.backbone = paddlex.cv.nets.hrnet.HRNet(
width=width, feature_maps="stage4")
def build_net(self, inputs):
if self.use_dice_loss or self.use_bce_loss:
self.num_classes = 1
image = inputs['image']
st4 = self.backbone(image)
# upsample
shape = fluid.layers.shape(st4[0])[-2:]
st4[1] = fluid.layers.resize_bilinear(st4[1], out_shape=shape)
st4[2] = fluid.layers.resize_bilinear(st4[2], out_shape=shape)
st4[3] = fluid.layers.resize_bilinear(st4[3], out_shape=shape)
out = fluid.layers.concat(st4, axis=1)
last_channels = sum(self.backbone.channels[self.backbone.width][-1])
out = self._conv_bn_layer(
input=out,
filter_size=1,
num_filters=last_channels,
stride=1,
if_act=True,
name='conv-2')
out = fluid.layers.conv2d(
input=out,
num_filters=self.num_classes,
filter_size=1,
stride=1,
padding=0,
act=None,
param_attr=ParamAttr(
initializer=MSRA(), name='conv-1_weights'),
bias_attr=False)
input_shape = fluid.layers.shape(image)[-2:]
logit = fluid.layers.resize_bilinear(out, input_shape)
if self.num_classes == 1:
out = sigmoid_to_softmax(logit)
out = fluid.layers.transpose(out, [0, 2, 3, 1])
else:
out = fluid.layers.transpose(logit, [0, 2, 3, 1])
pred = fluid.layers.argmax(out, axis=3)
pred = fluid.layers.unsqueeze(pred, axes=[3])
if self.mode == 'train':
label = inputs['label']
mask = label != self.ignore_index
return self._get_loss(logit, label, mask)
elif self.mode == 'eval':
label = inputs['label']
mask = label != self.ignore_index
loss = self._get_loss(logit, label, mask)
return loss, pred, label, mask
else:
if self.num_classes == 1:
logit = sigmoid_to_softmax(logit)
else:
logit = fluid.layers.softmax(logit, axis=1)
return pred, logit
def generate_inputs(self):
inputs = OrderedDict()
inputs['image'] = fluid.data(
dtype='float32', shape=[None, 3, None, None], name='image')
if self.mode == 'train':
inputs['label'] = fluid.data(
dtype='int32', shape=[None, 1, None, None], name='label')
elif self.mode == 'eval':
inputs['label'] = fluid.data(
dtype='int32', shape=[None, 1, None, None], name='label')
return inputs
def _get_loss(self, logit, label, mask):
avg_loss = 0
if not (self.use_dice_loss or self.use_bce_loss):
avg_loss += softmax_with_loss(
logit,
label,
mask,
num_classes=self.num_classes,
weight=self.class_weight,
ignore_index=self.ignore_index)
else:
if self.use_dice_loss:
avg_loss += dice_loss(logit, label, mask)
if self.use_bce_loss:
avg_loss += bce_loss(
logit, label, mask, ignore_index=self.ignore_index)
return avg_loss
def _conv_bn_layer(self,
input,
filter_size,
num_filters,
stride=1,
padding=1,
num_groups=1,
if_act=True,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=num_groups,
act=None,
param_attr=ParamAttr(
initializer=MSRA(), name=name + '_weights'),
bias_attr=False)
bn_name = name + '_bn'
bn = fluid.layers.batch_norm(
input=conv,
param_attr=ParamAttr(
name=bn_name + "_scale",
initializer=fluid.initializer.Constant(1.0)),
bias_attr=ParamAttr(
name=bn_name + "_offset",
initializer=fluid.initializer.Constant(0.0)),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
if if_act:
bn = fluid.layers.relu(bn)
return bn
......@@ -92,6 +92,12 @@ class Compose(ClsTransform):
outputs = (im, label)
return outputs
def add_augmenters(self, augmenters):
if not isinstance(augmenters, list):
raise Exception(
"augmenters should be list type in func add_augmenters()")
self.transforms = augmenters + self.transforms.transforms
class RandomCrop(ClsTransform):
"""对图像进行随机剪裁,模型训练时的数据增强操作。
......@@ -461,3 +467,56 @@ class ArrangeClassifier(ClsTransform):
else:
outputs = (im, )
return outputs
class ComposedClsTransforms(Compose):
""" 分类模型的基础Transforms流程,具体如下
训练阶段:
1. 随机从图像中crop一块子图,并resize成crop_size大小
2. 将1的输出按0.5的概率随机进行水平翻转
3. 将图像进行归一化
验证/预测阶段:
1. 将图像按比例Resize,使得最小边长度为crop_size[0] * 1.14
2. 从图像中心crop出一个大小为crop_size的图像
3. 将图像进行归一化
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
crop_size(int|list): 输入模型里的图像大小
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
crop_size=[224, 224],
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]):
width = crop_size
if isinstance(crop_size, list):
if crop_size[0] != crop_size[1]:
raise Exception(
"In classifier model, width and height should be equal, please modify your parameter `crop_size`"
)
width = crop_size[0]
if width % 32 != 0:
raise Exception(
"In classifier model, width and height should be multiple of 32, e.g 224、256、320...., please modify your parameter `crop_size`"
)
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
RandomCrop(crop_size=width), RandomHorizontalFlip(prob=0.5),
Normalize(
mean=mean, std=std)
]
else:
# 验证/预测时的transforms
transforms = [
ResizeByShort(short_size=int(width * 1.14)),
CenterCrop(crop_size=width), Normalize(
mean=mean, std=std)
]
super(ComposedClsTransforms, self).__init__(transforms)
......@@ -152,6 +152,12 @@ class Compose(DetTransform):
outputs = (im, im_info)
return outputs
def add_augmenters(self, augmenters):
if not isinstance(augmenters, list):
raise Exception(
"augmenters should be list type in func add_augmenters()")
self.transforms = augmenters + self.transforms.transforms
class ResizeByShort(DetTransform):
"""根据图像的短边调整图像大小(resize)。
......@@ -1227,3 +1233,108 @@ class ArrangeYOLOv3(DetTransform):
im_shape = im_info['image_shape']
outputs = (im, im_shape)
return outputs
class ComposedRCNNTransforms(Compose):
""" RCNN模型(faster-rcnn/mask-rcnn)图像处理流程,具体如下,
训练阶段:
1. 随机以0.5的概率将图像水平翻转
2. 图像归一化
3. 图像按比例Resize,scale计算方式如下
scale = min_max_size[0] / short_size_of_image
if max_size_of_image * scale > min_max_size[1]:
scale = min_max_size[1] / max_size_of_image
4. 将3步骤的长宽进行padding,使得长宽为32的倍数
验证阶段:
1. 图像归一化
2. 图像按比例Resize,scale计算方式同上训练阶段
3. 将2步骤的长宽进行padding,使得长宽为32的倍数
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
min_max_size(list): 图像在缩放时,最小边和最大边的约束条件
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
min_max_size=[800, 1333],
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]):
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
RandomHorizontalFlip(prob=0.5), Normalize(
mean=mean, std=std), ResizeByShort(
short_size=min_max_size[0], max_size=min_max_size[1]),
Padding(coarsest_stride=32)
]
else:
# 验证/预测时的transforms
transforms = [
Normalize(
mean=mean, std=std), ResizeByShort(
short_size=min_max_size[0], max_size=min_max_size[1]),
Padding(coarsest_stride=32)
]
super(ComposedRCNNTransforms, self).__init__(transforms)
class ComposedYOLOTransforms(Compose):
"""YOLOv3模型的图像预处理流程,具体如下,
训练阶段:
1. 在前mixup_epoch轮迭代中,使用MixupImage策略,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#mixupimage
2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调
3. 随机扩充图像,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#randomexpand
4. 随机裁剪图像
5. 将4步骤的输出图像Resize成shape参数的大小
6. 随机0.5的概率水平翻转图像
7. 图像归一化
验证/预测阶段:
1. 将图像Resize成shape参数大小
2. 图像归一化
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
shape(list): 输入模型中图像的大小,输入模型的图像会被Resize成此大小
mixup_epoch(int): 模型训练过程中,前mixup_epoch会使用mixup策略
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
shape=[608, 608],
mixup_epoch=250,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]):
width = shape
if isinstance(shape, list):
if shape[0] != shape[1]:
raise Exception(
"In YOLOv3 model, width and height should be equal")
width = shape[0]
if width % 32 != 0:
raise Exception(
"In YOLOv3 model, width and height should be multiple of 32, e.g 224、256、320...."
)
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
MixupImage(mixup_epoch=mixup_epoch), RandomDistort(),
RandomExpand(), RandomCrop(), Resize(
target_size=width,
interp='RANDOM'), RandomHorizontalFlip(), Normalize(
mean=mean, std=std)
]
else:
# 验证/预测时的transforms
transforms = [
Resize(
target_size=width, interp='CUBIC'), Normalize(
mean=mean, std=std)
]
super(ComposedYOLOTransforms, self).__init__(transforms)
......@@ -108,6 +108,12 @@ class Compose(SegTransform):
outputs = (im, im_info)
return outputs
def add_augmenters(self, augmenters):
if not isinstance(augmenters, list):
raise Exception(
"augmenters should be list type in func add_augmenters()")
self.transforms = augmenters + self.transforms.transforms
class RandomHorizontalFlip(SegTransform):
"""以一定的概率对图像进行水平翻转。当存在标注图像时,则同步进行翻转。
......@@ -1088,3 +1094,39 @@ class ArrangeSegmenter(SegTransform):
return (im, im_info)
else:
return (im, )
class ComposedSegTransforms(Compose):
""" 语义分割模型(UNet/DeepLabv3p)的图像处理流程,具体如下
训练阶段:
1. 随机对图像以0.5的概率水平翻转
2. 按不同的比例随机Resize原图
3. 从原图中随机crop出大小为train_crop_size大小的子图,如若crop出来的图小于train_crop_size,则会将图padding到对应大小
4. 图像归一化
预测阶段:
1. 图像归一化
Args:
mode(str): 图像处理所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
train_crop_size(list): 模型训练阶段,随机从原图crop的大小
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
train_crop_size=[769, 769],
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]):
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
RandomHorizontalFlip(prob=0.5), ResizeStepScaling(),
RandomPaddingCrop(crop_size=train_crop_size), Normalize(
mean=mean, std=std)
]
else:
# 验证/预测时的transforms
transforms = [Resize(512), Normalize(mean=mean, std=std)]
super(ComposedSegTransforms, self).__init__(transforms)
......@@ -97,8 +97,6 @@ class Predictor:
config.disable_glog_info()
if memory_optimize:
config.enable_memory_optim()
else:
config.diable_memory_optim()
# 开启计算图分析优化,包括OP融合等
config.switch_ir_optim(True)
......
......@@ -17,5 +17,6 @@ from . import cv
UNet = cv.models.UNet
DeepLabv3p = cv.models.DeepLabv3p
HRNet = cv.models.HRNet
transforms = cv.transforms.seg_transforms
visualize = cv.models.utils.visualize.visualize_segmentation
......@@ -110,7 +110,7 @@ class LabelMe2COCO(X2COCO):
annotation["segmentation"] = [list(np.asarray(points).flatten())]
annotation["iscrowd"] = 0
annotation["image_id"] = image_id + 1
annotation["bbox"] = list(map(float, get_bbox(height, width, points)))
annotation["bbox"] = list(map(float, self.get_bbox(height, width, points)))
annotation["area"] = annotation["bbox"][2] * annotation["bbox"][3]
annotation["category_id"] = label_to_num[label]
annotation["id"] = object_id + 1
......
......@@ -19,7 +19,7 @@ long_description = "PaddleX. A end-to-end deeplearning model development toolkit
setuptools.setup(
name="paddlex",
version='1.0.2',
version='1.0.4',
author="paddlex",
author_email="paddlex@baidu.com",
description=long_description,
......
import os
# 选择使用0号卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import paddlex as pdx
from paddlex.seg import transforms
# 下载和解压视盘分割数据集
optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
pdx.utils.download_and_decompress(optic_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(), transforms.ResizeRangeScaling(),
transforms.RandomPaddingCrop(crop_size=512), transforms.Normalize()
])
eval_transforms = transforms.Compose([
transforms.ResizeByLong(long_size=512),
transforms.Padding(target_size=512), transforms.Normalize()
])
# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.SegDataset(
data_dir='optic_disc_seg',
file_list='optic_disc_seg/train_list.txt',
label_list='optic_disc_seg/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.SegDataset(
data_dir='optic_disc_seg',
file_list='optic_disc_seg/val_list.txt',
label_list='optic_disc_seg/labels.txt',
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/unet/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
num_classes = len(train_dataset.labels)
model = pdx.seg.HRNet(num_classes=num_classes)
model.train(
num_epochs=20,
train_dataset=train_dataset,
train_batch_size=4,
eval_dataset=eval_dataset,
learning_rate=0.01,
save_dir='output/hrnet',
use_vdl=True)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册