未验证 提交 02a74874 编写于 作者: S SunAhong1993 提交者: GitHub

Merge pull request #8 from PaddlePaddle/develop

00
......@@ -35,6 +35,6 @@
- id: cpplint-cpp-source
name: cpplint
description: Check C++ code style using cpplint.py.
entry: bash cpplint_pre_commit.hook
entry: bash ./tools/codestyle/cpplint_pre_commit.hook
language: system
files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx)$
......@@ -63,9 +63,10 @@ class SegResult : public BaseResult {
public:
Mask<int64_t> label_map;
Mask<float> score_map;
std::string type = "seg";
void clear() {
label_map.clear();
score_map.clear();
}
};
} // namespce of PaddleX
} // namespace PaddleX
......@@ -65,6 +65,15 @@ bool Model::load_config(const std::string& model_dir) {
YAML::Node config = YAML::LoadFile(yaml_file);
type = config["_Attributes"]["model_type"].as<std::string>();
name = config["Model"].as<std::string>();
std::string version = config["version"].as<std::string>();
if (version[0] == '0') {
std::cerr << "[Init] Version of the loaded model is lower than 1.0.0, deployment "
<< "cannot be done, please refer to "
<< "https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/tutorials/deploy/upgrade_version.md "
<< "to transfer version."
<< std::endl;
return false;
}
bool to_rgb = true;
if (config["TransformsMode"].IsDefined()) {
std::string mode = config["TransformsMode"].as<std::string>();
......
......@@ -19,30 +19,30 @@ import argparse
def export_lite():
opt = lite.Opt()
model_file = os.path.join(FLAGS.model_path, '__model__')
params_file = os.path.join(FLAGS.model_path, '__params__')
opt.run_optimize("", model_file, params_file, FLAGS.place, FLAGS.save_dir)
model_file = os.path.join(FLAGS.model_dir, '__model__')
params_file = os.path.join(FLAGS.model_dir, '__params__')
opt.run_optimize("", model_file, params_file, FLAGS.place, FLAGS.save_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--model_path",
"--model_dir",
type=str,
default="",
help="model path.",
help="path of '__model__' and '__params__'.",
required=True)
parser.add_argument(
"--place",
type=str,
default="arm",
help="preprocess config path.",
help="run place: 'arm|opencl|x86|npu|xpu|rknpu|apu'.",
required=True)
parser.add_argument(
"--save_dir",
"--save_file",
type=str,
default="paddlex.onnx",
help="Directory for storing the output visualization files.",
help="file name for storing the output files.",
required=True)
FLAGS = parser.parse_args()
export_lite()
# Predictor部署-paddlex.deploy
# 预测部署-paddlex.deploy
使用AnalysisPredictor进行预测部署。
使用Paddle Inference进行高性能的Python预测部署。更多关于Paddle Inference信息请参考[Paddle Inference文档](https://paddle-inference.readthedocs.io/en/latest/#)
## Predictor类
......@@ -22,6 +22,7 @@ paddlex.deploy.Predictor(model_dir, use_gpu=False, gpu_id=0, use_mkl=False, use_
> >
> > ```
> > import paddlex
> >
> > model = paddlex.deploy.Predictor(model_dir, use_gpu=True)
> > result = model.predict(image_file)
> > ```
......
......@@ -9,7 +9,7 @@ PaddleX对于图像分类、目标检测、实例分割和语义分割内置了
| 任务类型 | 增强方法 |
| :------- | :------------|
| 图像分类 | [RandomCrop](cls_transforms.html#randomcrop)[RandomHorizontalFlip](cls_transforms.html#randomhorizontalflip)[RandomVerticalFlip](cls_transforms.html#randomverticalflip)<br> [RandomRotate](cls_transforms.html#randomratate)[RandomDistort](cls_transforms.html#randomdistort) |
|目标检测<br>实例分割| [RandomHorizontalFlip](det_transforms.html#randomhorizontalflip)[RandomDistort](det_transforms.html#randomdistort)[RandomCrop](det_transforms.html#randomcrop)<br> [[MixupImage](det_transforms.html#mixupimage)(仅支持YOLOv3模型)RandomExpand](det_transforms.html#randomexpand) |
|目标检测<br>实例分割| [RandomHorizontalFlip](det_transforms.html#randomhorizontalflip)[RandomDistort](det_transforms.html#randomdistort)[RandomCrop](det_transforms.html#randomcrop)<br> [MixupImage](det_transforms.html#mixupimage)(仅支持YOLOv3模型)[RandomExpand](det_transforms.html#randomexpand) |
|语义分割 | [RandomHorizontalFlip](seg_transforms.html#randomhorizontalflip)[RandomVerticalFlip](seg_transforms.html#randomverticalflip)[RandomRangeScaling](seg_transforms.html#randomrangescaling)<br> [RandomStepScaling](seg_transforms.html#randomstepscaling)[RandomPaddingCrop](seg_transforms.html#randompaddingcrop)[RandomBlur](seg_transforms.html#randomblur)<br> [RandomRotation](seg_transforms.html#randomrotation)[RandomScaleAspect](seg_transforms.html#randomscaleaspect)[RandomDistort](seg_transforms.html#randomdistort) |
## imgaug增强库的支持
......
......@@ -15,7 +15,7 @@ paddlex.cls.transforms.Compose(transforms)
## RandomCrop类
```python
paddlex.cls.transforms.RandomCrop(crop_size=224, lower_scale=0.88, lower_ratio=3. / 4, upper_ratio=4. / 3)
paddlex.cls.transforms.RandomCrop(crop_size=224, lower_scale=0.08, lower_ratio=3. / 4, upper_ratio=4. / 3)
```
对图像进行随机剪裁,模型训练时的数据增强操作。
......@@ -26,7 +26,7 @@ paddlex.cls.transforms.RandomCrop(crop_size=224, lower_scale=0.88, lower_ratio=3
### 参数
* **crop_size** (int): 随机裁剪后重新调整的目标边长。默认为224。
* **lower_scale** (float): 裁剪面积相对原面积比例的最小限制。默认为0.88。
* **lower_scale** (float): 裁剪面积相对原面积比例的最小限制。默认为0.08。
* **lower_ratio** (float): 宽变换比例的最小限制。默认为3. / 4。
* **upper_ratio** (float): 宽变换比例的最小限制。默认为4. / 3。
......
......@@ -8,6 +8,7 @@
model_zoo.md
metrics.md
interpret.md
parameters.md
how_to_convert_dataset.md
datasets.md
......
# PaddleX可解释性
目前深度学习模型普遍存在一个问题,因为使用模型预测还是一个黑盒,几乎无法去感知它的内部工作状态,预测结果的可信度一直遭到质疑。为此,PadlleX提供了2种对图像分类预测结果进行可解释性研究的算法:LIME和NormLIME。
## LIME
LIME全称Local interpretable model-agnostic explanations,表示一种与模型无关的局部可解释性。其实现步骤主要如下:
1. 获取图像的超像素。
2. 以输入样本为中心,在其附近的空间中进行随机采样,每个采样即对对象中的超像素进行随机遮掩(每个采样的权重和该采样与原样本的距离成反比)。
3. 每个采样通过预测模型得到新的输出,这样得到一系列的输入`X`和对应的输出`Y`
4.`X`转换为超像素特征`F`,用一个简单的、可解释的模型`Model`(这里使用岭回归)来拟合`F``Y`的映射关系。
5. `Model`将得到`F`每个输入维度的权重(每个维度代表一个超像素),以此来解释模型。
LIME的使用方式可参见[代码示例](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/interpret/lime.py)[api介绍](../apis/visualize.html#lime)。在使用时,参数中的`num_samples`设置尤为重要,其表示上述步骤2中的随机采样的个数,若设置过小会影响可解释性结果的稳定性,若设置过大则将在上述步骤3耗费较长时间;参数`batch_size`则表示在计算上述步骤3时,预测的batch size,若设置过小将在上述步骤3耗费较长时间,而上限则根据机器配置决定。
最终LIME可解释性算法的可视化结果如下所示:
![](../images/lime.png)
图中绿色区域代表起正向作用的超像素,红色区域代表起反向作用的超像素,"First n superpixels"代表前n个权重比较大的超像素(由上述步骤5计算所得结果)。
## NormLIME
NormLIME是在LIME上的改进,LIME的解释是局部性的,是针对当前样本给的特定解释,而NormLIME是利用一定数量的样本对当前样本的一个全局性的解释,有一定的降噪效果。其实现步骤如下所示:
1. 下载Kmeans模型参数和ResNet50_vc网络前三层参数。(ResNet50_vc的参数是在ImageNet上训练所得网络的参数;使用ImageNet图像作为数据集,每张图像从ResNet50_vc的第三层输出提取对应超象素位置上的平均特征和质心上的特征,训练将得到此处的Kmeans模型)
2. 计算测试集中每张图像的LIME结果。(如无测试集,可用验证集代替)
3. 使用Kmeans模型对所有图像中的所有像素进行聚类。
4. 对在同一个簇的超像素(相同的特征)进行权重的归一化,得到每个超像素的权重,以此来解释模型。
NormLIME的使用方式可参见[代码示例](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/interpret/normlime.py)[api介绍](../apis/visualize.html#normlime)。在使用时,参数中的`num_samples`设置尤为重要,其表示上述步骤2中的随机采样的个数,若设置过小会影响可解释性结果的稳定性,若设置过大则将在上述步骤3耗费较长时间;参数`batch_size`则表示在计算上述步骤3时,预测的batch size,若设置过小将在上述步骤3耗费较长时间,而上限则根据机器配置决定;而`dataset`则是由测试集或验证集构造的数据。
最终NormLIME可解释性算法的可视化结果如下所示:
![](../images/normlime.png)
图中绿色区域代表起正向作用的超像素,红色区域代表起反向作用的超像素,"First n superpixels"代表前n个权重比较大的超像素(由上述步骤5计算所得结果)。图中最后一行代表把LIME和NormLIME对应超像素权重相乘的结果。
\ No newline at end of file
......@@ -32,7 +32,7 @@ PaddleX是基于飞桨核心框架、开发套件和工具组件的深度学习
* PaddleX版本: v1.0.0
* 项目官网: http://www.paddlepaddle.org.cn/paddle/paddlex
* 项目GitHub: https://github.com/PaddlePaddle/PaddleX/tree/develop
* 项目GitHub: https://github.com/PaddlePaddle/PaddleX
* 官方QQ用户群: 1045148026
* GitHub Issue反馈: http://www.github.com/PaddlePaddle/PaddleX/issues
......@@ -61,7 +61,7 @@ eval_dataset = pdx.datasets.ImageNet(
本文档中使用百度基于蒸馏方法得到的MobileNetV3预训练模型,模型结构与MobileNetV3一致,但精度更高。PaddleX内置了20多种分类模型,查阅[PaddleX模型库](appendix/model_zoo.md)了解更多分类模型。
```
num_classes = len(train_dataset.labels)
model.pdx.cls.MobileNetV3_small_ssld(num_classes=num_classes)
model = pdx.cls.MobileNetV3_small_ssld(num_classes=num_classes)
```
### 3.4 定义训练参数
......@@ -86,7 +86,7 @@ python train.py
## 5. 训练过程中查看训练指标
模型在训练过程中,所有的迭代信息将以标注输出流的形式,输出到命令执行的终端上,用户也可通过visualdl以可视化的方式查看训练指标的变化,通过如下方式启动visualdl后,在浏览器打开https://0.0.0.0:8001 (或 https://localhost:8001)即可。
```
visualdl --logdir output/mobilenetv2/vdl_log --port 8000
visualdl --logdir output/mobilenetv2/vdl_log --port 8001
```
![](./images/vdl1.jpg)
......
# 数据准备
## 数据标注
## 主流标注软件支持
## EasyData数据标注支持
该部分内容已迁移至[附录](../appendix/datasets.md)
# 移动端部署
PaddleX的移动端部署由PaddleLite实现,部署的流程如下,首先将训练好的模型导出为inference model,然后使用PaddleLite的python接口对模型进行优化,最后使用PaddleLite的预测库进行部署,
PaddleLite的详细介绍和使用可参考:[PaddleLite文档](https://paddle-lite.readthedocs.io/zh/latest/)
> PaddleX --> Inference Model --> PaddleLite Opt --> PaddleLite Inference
以下介绍如何将PaddleX导出为inference model,然后使用PaddleLite的OPT模块对模型进行优化:
step 1: 安装PaddleLite
```
......@@ -9,14 +16,21 @@ pip install paddlelite
step 2: 将PaddleX模型导出为inference模型
参考[导出inference模型](deploy_server/deploy_python.html#inference)将模型导出为inference格式模型。
**注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](./upgrade_version.md)对模型版本进行升级。**
step 3: 将inference模型转换成PaddleLite模型
```
python /path/to/PaddleX/deploy/lite/export_lite.py --model_path /path/to/inference_model --save_dir /path/to/onnx_model
python /path/to/PaddleX/deploy/lite/export_lite.py --model_dir /path/to/inference_model --save_file /path/to/onnx_model --place place/to/run
```
`--model_path`用于指定inference模型的路径,`--save_dir`用于指定Lite模型的保存路径。
| 参数 | 说明 |
| ---- | ---- |
| model_dir | 预测模型所在路径,包含"__model__", "__params__"文件 |
| save_file | 模型输出的名称,默认为"paddlex.nb" |
| place | 运行的平台,可选:arm|opencl|x86|npu|xpu|rknpu|apu |
step 4: 预测
......
......@@ -104,7 +104,8 @@ make
### Step5: 预测及可视化
参考[导出inference模型](../deploy_python.html#inference)将模型导出为inference格式模型。
参考[导出inference模型](../../deploy_python.html#inference)将模型导出为inference格式模型。
**注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../../upgrade_version.md)对模型版本进行升级。**
编译成功后,预测demo的可执行程序分别为`build/demo/detector``build/demo/classifer``build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
......
......@@ -100,6 +100,7 @@ PaddlePaddle C++ 预测库针对不同的`CPU`,`CUDA`,以及是否支持Tens
### Step5: 预测及可视化
参考[导出inference模型](../deploy_python.html#inference)将模型导出为inference格式模型。
**注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../../upgrade_version.md)对模型版本进行升级。**
上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录:
......
......@@ -20,6 +20,8 @@ paddlex --export_inference --model_dir=./xiaoduxiong_epoch_12 --save_dir=./infer
```
## 预测部署
**注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../upgrade_version.md)对模型版本进行升级。**
> 点击下载测试图片 [xiaoduxiong_test_image.tar.gz](https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_test_image.tar.gz)
```
......
......@@ -61,7 +61,7 @@ paddlex-encryption
./paddlex-encryption/tool/paddlex_encrypt_tool -model_dir /path/to/paddlex_inference_model -save_dir /path/to/paddlex_encrypted_model
```
`-model_dir`用于指定inference模型路径(参考[导出inference模型](deploy_python.html#inference)将模型导出为inference格式模型),可使用[导出小度熊识别模型](deploy_python.html#inference)中导出的`inference_model`。加密完成后,加密过的模型会保存至指定的`-save_dir`下,包含`__model__.encrypted``__params__.encrypted``model.yml`三个文件,同时生成密钥信息,命令输出如下图所示,密钥为`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`
`-model_dir`用于指定inference模型路径(参考[导出inference模型](deploy_python.html#inference)将模型导出为inference格式模型),可使用[导出小度熊识别模型](deploy_python.html#inference)中导出的`inference_model`**注意**:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../upgrade_version.md)对模型版本进行升级。)。加密完成后,加密过的模型会保存至指定的`-save_dir`下,包含`__model__.encrypted``__params__.encrypted``model.yml`三个文件,同时生成密钥信息,命令输出如下图所示,密钥为`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`
![](../images/encrypt.png)
......
# 模型版本升级
由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,用户需要按照以下步骤对模型版本进行转换,转换后的模型可以在多端上完成部署。
## 检查模型版本
存放模型的文件夹存有一个`model.yml`文件,该文件的最后一行`version`值表示模型的版本号,若版本号小于1.0.0,则需要进行版本转换,若版本号大于及等于1.0.0,则不需要进行版本转换。
## 版本转换
```
paddlex --export_inference --model_dir=/path/to/low_version_model --save_dir=SSpath/to/high_version_model
```
`--model_dir`为版本号小于1.0.0的模型路径,可以是PaddleX训练过程保存的模型,也可以是导出为inference格式的模型。`--save_dir`为转换为高版本的模型,后续可用于多端部署。
\ No newline at end of file
......@@ -113,7 +113,7 @@ class VOCDetection(Dataset):
is_crowd = np.zeros((len(objs), 1), dtype=np.int32)
difficult = np.zeros((len(objs), 1), dtype=np.int32)
for i, obj in enumerate(objs):
cname = obj.find('name').text
cname = obj.find('name').text.strip()
gt_class[i][0] = cname2cid[cname]
_difficult = int(obj.find('difficult').text)
x1 = float(obj.find('bndbox').find('xmin').text)
......
......@@ -42,7 +42,7 @@ def sensitivity(program,
if pruned_ratios is None:
pruned_ratios = np.arange(0.1, 1, step=0.1)
total_evaluate_iters = 1
total_evaluate_iters = 0
for name in param_names:
if name not in sensitivities:
sensitivities[name] = {}
......@@ -52,12 +52,6 @@ def sensitivity(program,
len(list(pruned_ratios)) - len(sensitivities[name]))
eta = '-'
start_time = time.time()
progress = 1.0 / total_evaluate_iters
progress = "%.2f%%" % (progress * 100)
logging.info(
"Total evaluate iters={}, current={}, progress={}, eta={}".format(
total_evaluate_iters, 1, progress, eta),
use_color=True)
baseline = eval_func(graph.program)
cost = time.time() - start_time
eta = cost * (total_evaluate_iters - 1)
......@@ -73,7 +67,7 @@ def sensitivity(program,
logging.info(
"Total evaluate iters={}, current={}, progress={}, eta={}".
format(
total_evaluate_iters, current_iter+1, progress,
total_evaluate_iters, current_iter, progress,
seconds_to_hms(
int(cost * (total_evaluate_iters - current_iter)))),
use_color=True)
......
......@@ -50,7 +50,7 @@ def visualize(model, sensitivities_file, save_dir='./'):
min(np.array(x)) - 0.01,
max(np.array(x)) + 0.01, 0.05)
my_y_ticks = np.arange(0.05, 1, 0.05)
plt.xticks(my_x_ticks, rotation=30, fontsize=8)
plt.xticks(my_x_ticks, rotation=15, fontsize=8)
plt.yticks(my_y_ticks, fontsize=8)
for a, b in zip(x, y):
plt.text(
......
......@@ -103,14 +103,14 @@ class RandomCrop(ClsTransform):
Args:
crop_size (int): 随机裁剪后重新调整的目标边长。默认为224。
lower_scale (float): 裁剪面积相对原面积比例的最小限制。默认为0.88。
lower_scale (float): 裁剪面积相对原面积比例的最小限制。默认为0.08。
lower_ratio (float): 宽变换比例的最小限制。默认为3. / 4。
upper_ratio (float): 宽变换比例的最大限制。默认为4. / 3。
"""
def __init__(self,
crop_size=224,
lower_scale=0.88,
lower_scale=0.08,
lower_ratio=3. / 4,
upper_ratio=4. / 3):
self.crop_size = crop_size
......
......@@ -23,7 +23,7 @@ def execute_imgaug(augmenter, im, bboxes=None, polygons=None,
import imgaug.augmentables.bbs as bbs
aug_im = im.astype('uint8')
aug_im = augmenter.augment(image=aug_im)
aug_im = augmenter.augment(image=aug_im).astype('float32')
return aug_im
# TODO imgaug的标注处理逻辑与paddlex已存的transform存在部分差异
......
......@@ -20,6 +20,7 @@ import six
import glob
from .data_path_utils import _find_classes
from PIL import Image
import paddlex.utils.logging as logging
def resize_short(img, target_size, interpolation=None):
......@@ -117,7 +118,7 @@ def read_image(img_path, target_size=256, crop_size=224):
assert len(img_path.shape) == 4
return img_path
else:
ValueError(f"Not recognized data type {type(img_path)}.")
ValueError("Not recognized data type {}.".format(type(img_path)))
class ReaderConfig(object):
......@@ -156,7 +157,7 @@ class ReaderConfig(object):
img = cv2.imread(img_path)
if img is None:
print(img_path)
logging.info(img_path)
continue
img = resize_short(img, target_size, interpolation=None)
img = crop_image(img, crop_size, center=self.is_test)
......@@ -208,7 +209,7 @@ def create_reader(list_image_path, list_label=None, is_test=False):
img = cv2.imread(img_path)
if img is None:
print(img_path)
logging.info(img_path)
continue
img = resize_short(img, target_size, interpolation=None)
......
......@@ -21,6 +21,7 @@ from . import lime_base
from ._session_preparation import paddle_get_fc_weights, compute_features_for_kmeans, gen_user_home
from .normlime_base import combine_normlime_and_lime, get_feature_for_kmeans, load_kmeans_model
from paddlex.interpret.as_data_reader.readers import read_image
import paddlex.utils.logging as logging
import cv2
......@@ -71,7 +72,8 @@ class CAM(object):
if self.label_names is not None:
ln = self.label_names[l]
print(f'predicted result: {ln} with probability {probability[pred_label[0]]:.3f}')
prob_str = "%.3f" % (probability[pred_label[0]])
logging.info("predicted result: {} with probability {}.".format(ln, prob_str))
return feature_maps, fc_weights
def interpret(self, data_, visualization=True, save_to_disk=True, save_outdir=None):
......@@ -96,7 +98,8 @@ class CAM(object):
ax.axis("off")
axes = axes.ravel()
axes[0].imshow(self.image)
axes[0].set_title(f"label {ln}, proba: {self.predicted_probability: .3f}")
prob_str = "{%.3f}" % (self.predicted_probability)
axes[0].set_title("label {}, proba: {}".format(ln, prob_str))
axes[1].imshow(cam)
axes[1].set_title("CAM")
......@@ -157,14 +160,15 @@ class LIME(object):
if self.label_names is not None:
ln = self.label_names[l]
print(f'predicted result: {ln} with probability {probability[pred_label[0]]:.3f}')
prob_str = "%.3f" % (probability[pred_label[0]])
logging.info("predicted result: {} with probability {}.".format(ln, prob_str))
end = time.time()
algo = lime_base.LimeImageInterpreter()
interpreter = algo.interpret_instance(self.image, self.predict_fn, self.labels, 0,
num_samples=self.num_samples, batch_size=self.batch_size)
self.lime_interpreter = interpreter
print('lime time: ', time.time() - end, 's.')
logging.info('lime time: ' + str(time.time() - end) + 's.')
def interpret(self, data_, visualization=True, save_to_disk=True, save_outdir=None):
if self.lime_interpreter is None:
......@@ -189,7 +193,8 @@ class LIME(object):
ax.axis("off")
axes = axes.ravel()
axes[0].imshow(self.image)
axes[0].set_title(f"label {ln}, proba: {self.predicted_probability: .3f}")
prob_str = "{%.3f}" % (self.predicted_probability)
axes[0].set_title("label {}, proba: {}".format(ln, prob_str))
axes[1].imshow(mark_boundaries(self.image, self.lime_interpreter.segments))
axes[1].set_title("superpixel segmentation")
......@@ -201,7 +206,7 @@ class LIME(object):
l, positive_only=False, hide_rest=False, num_features=num_to_show
)
axes[ncols + i].imshow(mark_boundaries(temp, mask))
axes[ncols + i].set_title(f"label {ln}, first {num_to_show} superpixels")
axes[ncols + i].set_title("label {}, first {} superpixels".format(ln, num_to_show))
if save_to_disk and save_outdir is not None:
os.makedirs(save_outdir, exist_ok=True)
......@@ -232,8 +237,9 @@ class NormLIME(object):
raise ValueError("NormLIME needs the KMeans model, where we provided a default one in "
"pre_models/kmeans_model.pkl.")
else:
print("Warning: It is *strongly* suggested to use the default KMeans model in pre_models/kmeans_model.pkl. "
"Use another one will change the final result.")
logging.debug("Warning: It is *strongly* suggested to use the \
default KMeans model in pre_models/kmeans_model.pkl. \
Use another one will change the final result.")
self.kmeans_model = load_kmeans_model(kmeans_model_for_normlime)
self.num_samples = num_samples
......@@ -243,7 +249,7 @@ class NormLIME(object):
self.normlime_weights = np.load(normlime_weights, allow_pickle=True).item()
except:
self.normlime_weights = None
print("Warning: not find the correct precomputed Normlime result.")
logging.debug("Warning: not find the correct precomputed Normlime result.")
self.predict_fn = predict_fn
......@@ -289,8 +295,7 @@ class NormLIME(object):
self.predicted_probability = self._lime.predicted_probability
self.image = image_show[0]
self.labels = self._lime.labels
# print(f'predicted result: {self.predicted_label} with probability {self.predicted_probability: .3f}')
print('performing NormLIME operations ...')
logging.info('performing NormLIME operations ...')
cluster_labels = self.predict_cluster_labels(
compute_features_for_kmeans(image_show).transpose((1, 2, 0)), self._lime.lime_interpreter.segments
......@@ -329,7 +334,8 @@ class NormLIME(object):
axes = axes.ravel()
axes[0].imshow(self.image)
axes[0].set_title(f"label {ln}, proba: {self.predicted_probability: .3f}")
prob_str = "{%.3f}" % (self.predicted_probability)
axes[0].set_title("label {}, proba: {}".format(ln, prob_str))
axes[1].imshow(mark_boundaries(self.image, self._lime.lime_interpreter.segments))
axes[1].set_title("superpixel segmentation")
......@@ -342,7 +348,7 @@ class NormLIME(object):
l, positive_only=False, hide_rest=False, num_features=num_to_show
)
axes[ncols + i].imshow(mark_boundaries(temp, mask))
axes[ncols + i].set_title(f"LIME: first {num_to_show} superpixels")
axes[ncols + i].set_title("LIME: first {} superpixels".format(num_to_show))
# NormLIME visualization
self._lime.lime_interpreter.local_weights = g_weights
......@@ -351,7 +357,7 @@ class NormLIME(object):
l, positive_only=False, hide_rest=False, num_features=num_to_show
)
axes[ncols * 2 + i].imshow(mark_boundaries(temp, mask))
axes[ncols * 2 + i].set_title(f"NormLIME: first {num_to_show} superpixels")
axes[ncols * 2 + i].set_title("NormLIME: first {} superpixels".format(num_to_show))
# NormLIME*LIME visualization
combined_weights = combine_normlime_and_lime(lime_weights, g_weights)
......@@ -361,7 +367,7 @@ class NormLIME(object):
l, positive_only=False, hide_rest=False, num_features=num_to_show
)
axes[ncols * 3 + i].imshow(mark_boundaries(temp, mask))
axes[ncols * 3 + i].set_title(f"Combined: first {num_to_show} superpixels")
axes[ncols * 3 + i].set_title("Combined: first {} superpixels".format(num_to_show))
self._lime.lime_interpreter.local_weights = lime_weights
......@@ -433,32 +439,32 @@ def save_fig(data_, save_outdir, algorithm_name, num_samples=3000):
import matplotlib.pyplot as plt
if isinstance(data_, str):
if algorithm_name == 'cam':
f_out = f"{algorithm_name}_{data_.split('/')[-1]}.png"
f_out = "{}_{}.png".format(algorithm_name, data_.split('/')[-1])
else:
f_out = f"{algorithm_name}_{data_.split('/')[-1]}_s{num_samples}.png"
f_out = "{}_{}_s{}.png".format(algorithm_name, data_.split('/')[-1], num_samples)
plt.savefig(
os.path.join(save_outdir, f_out)
)
else:
n = 0
if algorithm_name == 'cam':
f_out = f'cam-{n}.png'
f_out = 'cam-{}.png'.format(n)
else:
f_out = f'{algorithm_name}_s{num_samples}-{n}.png'
f_out = '{}_s{}-{}.png'.format(algorithm_name, num_samples, n)
while os.path.exists(
os.path.join(save_outdir, f_out)
):
n += 1
if algorithm_name == 'cam':
f_out = f'cam-{n}.png'
f_out = 'cam-{}.png'.format(n)
else:
f_out = f'{algorithm_name}_s{num_samples}-{n}.png'
f_out = '{}_s{}-{}.png'.format(algorithm_name, num_samples, n)
continue
plt.savefig(
os.path.join(
save_outdir, f_out
)
)
print('The image of intrepretation result save in {}'.format(os.path.join(
logging.info('The image of intrepretation result save in {}'.format(os.path.join(
save_outdir, f_out
)))
......@@ -34,6 +34,7 @@ import scipy as sp
import tqdm
import copy
from functools import partial
import paddlex.utils.logging as logging
class LimeBase(object):
......@@ -230,9 +231,9 @@ class LimeBase(object):
local_pred = easy_model.predict(neighborhood_data[0, used_features].reshape(1, -1))
if self.verbose:
print('Intercept', easy_model.intercept_)
print('Prediction_local', local_pred,)
print('Right:', neighborhood_labels[0, label])
logging.info('Intercept' + str(easy_model.intercept_))
logging.info('Prediction_local' + str(local_pred))
logging.info('Right:' + str(neighborhood_labels[0, label]))
return (easy_model.intercept_,
sorted(zip(used_features, easy_model.coef_),
key=lambda x: np.abs(x[1]), reverse=True),
......@@ -451,7 +452,6 @@ class LimeImageInterpreter(object):
d = cdist(centroids, centroids, 'sqeuclidean')
for x in np.unique(segments):
# print(np.argmin(d[x]))
a = [image[segments == i] for i in np.argsort(d[x])[1:6]]
mx = np.mean(np.concatenate(a), axis=0)
fudged_image[segments == x] = mx
......
......@@ -21,6 +21,7 @@ from paddlex.interpret.as_data_reader.readers import read_image
import paddlex.utils.logging as logging
from . import lime_base
from ._session_preparation import compute_features_for_kmeans, gen_user_home
import paddlex.utils.logging as logging
def load_kmeans_model(fname):
......@@ -67,7 +68,6 @@ def centroid_using_superpixels(features, segments):
one_list = np.zeros((len(np.unique(segments)), features.shape[2]))
for i, r in enumerate(regions):
one_list[i] = features[int(r.centroid[0] + 0.5), int(r.centroid[1] + 0.5), :]
# print(one_list.shape)
return one_list
......@@ -85,7 +85,7 @@ def precompute_normlime_weights(list_data_, predict_fn, num_samples=3000, batch_
precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, save_dir)
# load precomputed results, compute normlime weights and save.
fname_list = glob.glob(os.path.join(save_dir, f'lime_weights_s{num_samples}*.npy'))
fname_list = glob.glob(os.path.join(save_dir, 'lime_weights_s{}*.npy'.format(num_samples)))
return compute_normlime_weights(fname_list, save_dir, num_samples)
......@@ -117,10 +117,10 @@ def precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, sav
for data_index, each_data_ in enumerate(list_data_):
if isinstance(each_data_, str):
save_path = f"lime_weights_s{num_samples}_{each_data_.split('/')[-1].split('.')[0]}.npy"
save_path = "lime_weights_s{}_{}.npy".format(num_samples, each_data_.split('/')[-1].split('.')[0])
save_path = os.path.join(save_dir, save_path)
else:
save_path = f"lime_weights_s{num_samples}_{data_index}.npy"
save_path = "lime_weights_s{}_{}.npy".format(num_samples, data_index)
save_path = os.path.join(save_dir, save_path)
if os.path.exists(save_path):
......@@ -174,16 +174,16 @@ def precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, sav
def compute_normlime_weights(a_list_lime_fnames, save_dir, lime_num_samples):
normlime_weights_all_labels = {}
for f in a_list_lime_fnames:
try:
lime_weights_and_cluster = np.load(f, allow_pickle=True).item()
lime_weights = lime_weights_and_cluster['lime_weights']
cluster = lime_weights_and_cluster['cluster']
except:
print('When loading precomputed LIME result, skipping', f)
logging.info('When loading precomputed LIME result, skipping' + str(f))
continue
print('Loading precomputed LIME result,', f)
logging.info('Loading precomputed LIME result,' + str(f))
pred_labels = lime_weights.keys()
for y in pred_labels:
normlime_weights = normlime_weights_all_labels.get(y, {})
......@@ -207,23 +207,23 @@ def compute_normlime_weights(a_list_lime_fnames, save_dir, lime_num_samples):
# check normlime
if len(normlime_weights_all_labels.keys()) < max(normlime_weights_all_labels.keys()) + 1:
print(
"\n"
"Warning: !!! \n"
f"There are at least {max(normlime_weights_all_labels.keys()) + 1} classes, "
f"but the NormLIME has results of only {len(normlime_weights_all_labels.keys())} classes. \n"
"It may have cause unstable results in the later computation"
" but can be improved by computing more test samples."
logging.info(
"\n" + \
"Warning: !!! \n" + \
"There are at least {} classes, ".format(max(normlime_weights_all_labels.keys()) + 1) + \
"but the NormLIME has results of only {} classes. \n".format(len(normlime_weights_all_labels.keys())) + \
"It may have cause unstable results in the later computation" + \
" but can be improved by computing more test samples." + \
"\n"
)
n = 0
f_out = f'normlime_weights_s{lime_num_samples}_samples_{len(a_list_lime_fnames)}-{n}.npy'
f_out = 'normlime_weights_s{}_samples_{}-{}.npy'.format(lime_num_samples, len(a_list_lime_fnames), n)
while os.path.exists(
os.path.join(save_dir, f_out)
):
n += 1
f_out = f'normlime_weights_s{lime_num_samples}_samples_{len(a_list_lime_fnames)}-{n}.npy'
f_out = 'normlime_weights_s{}_samples_{}-{}.npy'.format(lime_num_samples, len(a_list_lime_fnames), n)
continue
np.save(
......
......@@ -269,11 +269,9 @@ def load_pretrain_weights(exe,
vars_to_load.append(var)
logging.debug("Weight {} will be load".format(var.name))
fluid.io.load_vars(
executor=exe,
dirname=weights_dir,
main_program=main_prog,
vars=vars_to_load)
params_dict = fluid.io.load_program_state(
weights_dir, var_list=vars_to_load)
fluid.io.set_program_state(main_prog, params_dict)
if len(vars_to_load) == 0:
logging.warning(
"There is no pretrain weights loaded, maybe you should check you pretrain model!"
......
#!/bin/bash
set -e
readonly VERSION="3.8"
version=$(clang-format -version)
if ! [[ $version == *"$VERSION"* ]]; then
echo "clang-format version check failed."
echo "a version contains '$VERSION' is needed, but get '$version'"
echo "you can install the right version, and make an soft-link to '\$PATH' env"
exit -1
fi
clang-format $@
#!/bin/bash
TOTAL_ERRORS=0
if [[ ! $TRAVIS_BRANCH ]]; then
# install cpplint on local machine.
if [[ ! $(which cpplint) ]]; then
pip install cpplint
fi
# diff files on local machine.
files=$(git diff --cached --name-status | awk '$1 != "D" {print $2}')
else
# diff files between PR and latest commit on Travis CI.
branch_ref=$(git rev-parse "$TRAVIS_BRANCH")
head_ref=$(git rev-parse HEAD)
files=$(git diff --name-status $branch_ref $head_ref | awk '$1 != "D" {print $2}')
fi
# The trick to remove deleted files: https://stackoverflow.com/a/2413151
for file in $files; do
if [[ $file =~ ^(patches/.*) ]]; then
continue;
else
cpplint --filter=-readability/fn_size $file;
TOTAL_ERRORS=$(expr $TOTAL_ERRORS + $?);
fi
done
exit $TOTAL_ERRORS
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册