未验证 提交 8ed6cefd 编写于 作者: J Jason 提交者: GitHub

Merge pull request #65 from FlyingQianMM/develop_encrypt

modify encrypt docs
# download pre-compiled paddle encrypt
ENCRYPTION_URL=https://bj.bcebos.com/paddlex/tools/paddlex-encryption.zip
if [ ! -d "./paddlex-encryption" ]; then
wget -c ${ENCRYPTION_URL}
unzip paddlex-encryption.zip
rm -rf paddlex-encryption.zip
fi
# download pre-compiled opencv lib # download pre-compiled opencv lib
OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2 OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2
if [ ! -d "./deps/opencv3gcc4.8" ]; then if [ ! -d "./deps/opencv3gcc4.8" ]; then
......
# 是否使用GPU(即是否使用 CUDA) # 是否使用GPU(即是否使用 CUDA)
WITH_GPU=OFF WITH_GPU=OFF
# 使用MKL or openblas # 使用MKL or openblas
WITH_MKL=ON WITH_MKL=ON
# 是否集成 TensorRT(仅WITH_GPU=ON 有效) # 是否集成 TensorRT(仅WITH_GPU=ON 有效)
WITH_TENSORRT=OFF WITH_TENSORRT=OFF
# TensorRT 的lib路径 # TensorRT 的路径
TENSORRT_DIR=/path/to/TensorRT/ TENSORRT_DIR=/path/to/TensorRT/
# Paddle 预测库路径 # Paddle 预测库路径
PADDLE_DIR=/path/to/fluid_inference/ PADDLE_DIR=/docker/jiangjiajun/PaddleDetection/deploy/cpp/fluid_inference
# Paddle 的预测库是否使用静态库来编译 # Paddle 的预测库是否使用静态库来编译
# 使用TensorRT时,Paddle的预测库通常为动态库 # 使用TensorRT时,Paddle的预测库通常为动态库
WITH_STATIC_LIB=OFF WITH_STATIC_LIB=OFF
# CUDA 的 lib 路径 # CUDA 的 lib 路径
CUDA_LIB=/path/to/cuda/lib/ CUDA_LIB=/usr/local/cuda/lib64
# CUDNN 的 lib 路径 # CUDNN 的 lib 路径
CUDNN_LIB=/path/to/cudnn/lib/ CUDNN_LIB=/usr/local/cuda/lib64
# 是否加载加密后的模型 # 是否加载加密后的模型
WITH_ENCRYPTION=OFF WITH_ENCRYPTION=ON
# 加密工具的路径 # 加密工具的路径, 如果使用自带预编译版本可不修改
ENCRYPTION_DIR=/path/to/encryption_tool/ sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的加密工具
ENCRYPTION_DIR=$(pwd)/paddlex-encryption
# OPENCV 路径, 如果使用自带预编译版本可不修改
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/ # OPENCV 路径, 如果使用自带预编译版本可不修改
sh $(pwd)/scripts/bootstrap.sh sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的opencv
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/
# 以下无需改动
rm -rf build # 以下无需改动
mkdir -p build rm -rf build
cd build mkdir -p build
cmake .. \ cd build
-DWITH_GPU=${WITH_GPU} \ cmake .. \
-DWITH_MKL=${WITH_MKL} \ -DWITH_GPU=${WITH_GPU} \
-DWITH_TENSORRT=${WITH_TENSORRT} \ -DWITH_MKL=${WITH_MKL} \
-DWITH_ENCRYPTION=${WITH_ENCRYPTION} \ -DWITH_TENSORRT=${WITH_TENSORRT} \
-DTENSORRT_DIR=${TENSORRT_DIR} \ -DWITH_ENCRYPTION=${WITH_ENCRYPTION} \
-DPADDLE_DIR=${PADDLE_DIR} \ -DTENSORRT_DIR=${TENSORRT_DIR} \
-DWITH_STATIC_LIB=${WITH_STATIC_LIB} \ -DPADDLE_DIR=${PADDLE_DIR} \
-DCUDA_LIB=${CUDA_LIB} \ -DWITH_STATIC_LIB=${WITH_STATIC_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \ -DCUDA_LIB=${CUDA_LIB} \
-DENCRYPTION_DIR=${ENCRYPTION_DIR} \ -DCUDNN_LIB=${CUDNN_LIB} \
-DOPENCV_DIR=${OPENCV_DIR} -DENCRYPTION_DIR=${ENCRYPTION_DIR} \
make -DOPENCV_DIR=${OPENCV_DIR}
make
...@@ -31,6 +31,8 @@ void Model::create_predictor(const std::string& model_dir, ...@@ -31,6 +31,8 @@ void Model::create_predictor(const std::string& model_dir,
std::string params_file = model_dir + OS_PATH_SEP + "__params__"; std::string params_file = model_dir + OS_PATH_SEP + "__params__";
#ifdef WITH_ENCRYPTION #ifdef WITH_ENCRYPTION
if (key != ""){ if (key != ""){
model_file = model_dir + OS_PATH_SEP + "__model__.encrypted";
params_file = model_dir + OS_PATH_SEP + "__params__.encrypted";
paddle_security_load_model(&config, key.c_str(), model_file.c_str(), params_file.c_str()); paddle_security_load_model(&config, key.c_str(), model_file.c_str(), params_file.c_str());
} }
#endif #endif
......
...@@ -67,6 +67,12 @@ CUDA_LIB=/path/to/cuda/lib/ ...@@ -67,6 +67,12 @@ CUDA_LIB=/path/to/cuda/lib/
# CUDNN 的 lib 路径 # CUDNN 的 lib 路径
CUDNN_LIB=/path/to/cudnn/lib/ CUDNN_LIB=/path/to/cudnn/lib/
# 是否加载加密后的模型
WITH_ENCRYPTION=ON
# 加密工具的路径, 如果使用自带预编译版本可不修改
sh $(pwd)/scripts/bootstrap.sh # 下载预编译版本的加密工具
ENCRYPTION_DIR=$(pwd)/paddlex-encryption
# OPENCV 路径, 如果使用自带预编译版本可不修改 # OPENCV 路径, 如果使用自带预编译版本可不修改
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/ OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/
sh $(pwd)/scripts/bootstrap.sh sh $(pwd)/scripts/bootstrap.sh
...@@ -79,11 +85,13 @@ cmake .. \ ...@@ -79,11 +85,13 @@ cmake .. \
-DWITH_GPU=${WITH_GPU} \ -DWITH_GPU=${WITH_GPU} \
-DWITH_MKL=${WITH_MKL} \ -DWITH_MKL=${WITH_MKL} \
-DWITH_TENSORRT=${WITH_TENSORRT} \ -DWITH_TENSORRT=${WITH_TENSORRT} \
-DWITH_ENCRYPTION=${WITH_ENCRYPTION} \
-DTENSORRT_DIR=${TENSORRT_DIR} \ -DTENSORRT_DIR=${TENSORRT_DIR} \
-DPADDLE_DIR=${PADDLE_DIR} \ -DPADDLE_DIR=${PADDLE_DIR} \
-DWITH_STATIC_LIB=${WITH_STATIC_LIB} \ -DWITH_STATIC_LIB=${WITH_STATIC_LIB} \
-DCUDA_LIB=${CUDA_LIB} \ -DCUDA_LIB=${CUDA_LIB} \
-DCUDNN_LIB=${CUDNN_LIB} \ -DCUDNN_LIB=${CUDNN_LIB} \
-DENCRYPTION_DIR=${ENCRYPTION_DIR} \
-DOPENCV_DIR=${OPENCV_DIR} -DOPENCV_DIR=${OPENCV_DIR}
make make
......
# Paddle模型加密方案 # Paddle模型加密方案
飞桨团队推出模型加密方案,使用业内主流的AES加密技术对最终模型进行加密。飞桨用户可以通过PaddleX导出模型后,使用该方案对模型进行加密,预测时使用解密SDK进行模型解密并完成推理,大大提升AI应用安全性和开发效率。 飞桨团队推出模型加密方案,使用业内主流的AES加密技术对最终模型进行加密。飞桨用户可以通过PaddleX导出模型后,使用该方案对模型进行加密,预测时使用解密SDK进行模型解密并完成推理,大大提升AI应用安全性和开发效率。
** 注意:目前加密方案仅支持Linux系统**
## 1. 方案介绍 **注意:目前加密方案仅支持Linux系统**
### 1.1 工具组成 ## 1. 方案简介
[PaddleX模型加密SDK下载](https://bj.bcebos.com/paddlex/tools/paddlex-encryption.zip) ### 1.1 加密工具
下载并解压后,目录包含内容为: [PaddleX模型加密工具](https://bj.bcebos.com/paddlex/tools/paddlex-encryption.zip)。在编译部署代码时,编译脚本会自动下载加密工具,您也可以选择手动下载。
加密工具包含内容为:
``` ```
paddlex-encryption paddlex-encryption
├── include # 头文件:paddle_model_decrypt.h(解密)和paddle_model_encrypt.h(加密) ├── include # 头文件:paddle_model_decrypt.h(解密)和paddle_model_encrypt.h(加密)
| |
├── lib # libpmodel-encrypt.so和libpmodel-decrypt.so动态库 ├── lib # libpmodel-encrypt.so和libpmodel-decrypt.so动态库
| |
...@@ -21,12 +22,56 @@ paddlex-encryption ...@@ -21,12 +22,56 @@ paddlex-encryption
### 1.2 加密PaddleX模型 ### 1.2 加密PaddleX模型
模型加密后,会产生随机密钥信息(用于AES加解密使用),该key值需要在模型加载时传入作为解密使用。 对模型完成加密后,加密工具会产生随机密钥信息(用于AES加解密使用),需要在后续加密部署时传入该密钥来用于解密。
> 32字节key + 16字节iv, 注意这里产生的key是经过base64编码后的,这样可以扩充选取key的范围 > 密钥由32字节key + 16字节iv组成, 注意这里产生的key是经过base64编码后的,这样可以扩充key的选取范围
``` ```
./paddlex-encryption -model_dir paddlex_inference_model -save_dir paddlex_encrypted_model ./paddlex-encryption/tool/paddlex_encrypt_tool -model_dir /path/to/paddlex_inference_model -save_dir /path/to/paddlex_encrypted_model
``` ```
模型在加密后,会保存至指定的`-save_dir`下,同时生成密钥信息,命令输出如下图所示,密钥为`33NRtxvpDN+rkoiECm/e1Qc7sDlODdac7wp1m+3hFSU=`
`-model_dir`用于指定inference模型路径,可使用[导出小度熊识别模型](deploy.md#导出inference模型)中导出的`inference_model`。加密完成后,加密过的模型会保存至指定的`-save_dir`下,包含`__model__.encrypted``__params__.encrypted``model.yml`三个文件,同时生成密钥信息,命令输出如下图所示,密钥为`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`
![](images/encryt.png) ![](images/encryt.png)
## 2. PaddleX C++加密部署 ## 2. PaddleX C++加密部署
参考[Linux平台编译指南](deploy_cpp_linux.md)编译C++部署代码。编译成功后,预测demo的可执行程序分别为`build/demo/detector``build/demo/classifer``build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
| 参数 | 说明 |
| ---- | ---- |
| model_dir | 导出的预测模型所在路径 |
| image | 要预测的图片文件路径 |
| image_list | 按行存储图片路径的.txt文件 |
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| use_trt | 是否使用 TensorTr 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output",classfier无该参数 |
| key | 加密过程中产生的密钥信息,默认值为""表示加载的是未加密的模型 |
## 样例
可使用[导出小度熊识别模型](deploy.md#导出inference模型)中的测试图片进行预测。
`样例一`
不使用`GPU`测试图片 `/path/to/xiaoduxiong.jpeg`
```shell
./build/demo/detector --model_dir=/path/to/inference_model --image=/path/to/xiaoduxiong.jpeg --save_dir=output --key=kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=
```
`--key`传入加密工具输出的密钥,例如`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`, 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
`样例二`:
使用`GPU`预测多个图片`/path/to/image_list.txt`,image_list.txt内容的格式如下:
```
/path/to/images/xiaoduxiong1.jpeg
/path/to/images/xiaoduxiong2.jpeg
...
/path/to/images/xiaoduxiongn.jpeg
```
```shell
./build/demo/detector --model_dir=/path/to/models/inference_model --image_list=/root/projects/images_list.txt --use_gpu=1 --save_dir=output --key=kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=
```
`--key`传入加密工具输出的密钥,例如`kLAl1qOs5uRbFt0/RrIDTZW2+tOf5bzvUIaHGF8lJ1c=`, 图片文件`可视化预测结果`会保存在`save_dir`参数设置的目录下。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册