未验证 提交 88bfd3b8 编写于 作者: J Jason 提交者: GitHub

Update README.md

上级 4646161f
...@@ -2,15 +2,15 @@ ...@@ -2,15 +2,15 @@
本目录下整理了使用PaddleX进行模型剪裁训练的代码,代码均会自动下载数据,并使用单张GPU卡进行训练。 本目录下整理了使用PaddleX进行模型剪裁训练的代码,代码均会自动下载数据,并使用单张GPU卡进行训练。
PaddleX提供了两种剪裁训练方式, PaddleX提供了两种剪裁训练方式,
1. 用户自行计算剪裁配置(推荐),整体流程为 1. 用户自行计算剪裁配置(推荐),整体流程为
> 1.使用数据训练原始模型; > 1.使用数据训练原始模型;
> 2.使用第1步训练好的模型,在验证集上计算各个模型参数的敏感度,并将敏感信息保存至本地文件 > 2.使用第1步训练好的模型,在验证集上计算各个模型参数的敏感度,并将敏感信息保存至本地文件
> 3.再次使用数据训练原始模型,在训练时调用`train`接口时,传入第2步计算得到的参数敏感信息文件, > 3.再次使用数据训练原始模型,在训练时调用`train`接口时,传入第2步计算得到的参数敏感信息文件,
> 4.模型在训练过程中,会根据传入的参数敏感信息文件,对模型结构剪裁后,继续迭代训练 > 4.模型在训练过程中,会根据传入的参数敏感信息文件,对模型结构剪裁后,继续迭代训练
> >
2. 使用PaddleX预先计算好的参数敏感度信息文件,整体流程为 2. 使用PaddleX预先计算好的参数敏感度信息文件,整体流程为
> 1. 在训练调用`train`接口时,将`sensetivities_file`参数设为`DEFAULT`字符串 > 1. 在训练调用`train`接口时,将`sensetivities_file`参数设为`DEFAULT`字符串
> 2. 在训练过程中,会自动下载PaddleX预先计算好的模型参数敏感度信息,并对模型结构剪裁,继而迭代训练 > 2. 在训练过程中,会自动下载PaddleX预先计算好的模型参数敏感度信息,并对模型结构剪裁,继而迭代训练
上述两种方式,第1种方法相对比第2种方法少了两步(即用户训练原始模型+自行计算参数敏感度信息),实验验证第1种方法的精度会更高,剪裁的模型效果更好,因此在时间和计算成本允许的前提下,更推荐使用第1种方法。 上述两种方式,第1种方法相对比第2种方法少了两步(即用户训练原始模型+自行计算参数敏感度信息),实验验证第1种方法的精度会更高,剪裁的模型效果更好,因此在时间和计算成本允许的前提下,更推荐使用第1种方法。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册