提交 81fcfd3e 编写于 作者: J jiangjiajun

add augmenters detect in add augmenters

上级 fd2cb4a6
# 使用教程——训练模型
本目录下整理了使用PaddleX训练模型的示例代码,代码中均提供了示例数据的自动下载,并均使用单张GPU卡进行训练。
|代码 | 模型任务 | 数据 |
|------|--------|---------|
|classification/mobilenetv2.py | 图像分类MobileNetV2 | 蔬菜分类 |
|classification/resnet50.py | 图像分类ResNet50 | 蔬菜分类 |
|detection/faster_rcnn_r50_fpn.py | 目标检测FasterRCNN | 昆虫检测 |
|detection/mask_rcnn_f50_fpn.py | 实例分割MaskRCNN | 垃圾分拣 |
|segmentation/deeplabv3p.py | 语义分割DeepLabV3| 视盘分割 |
|segmentation/unet.py | 语义分割UNet | 视盘分割 |
## 开始训练
在安装PaddleX后,使用如下命令开始训练
```
python classification/mobilenetv2.py
```
import os
# 选择使用0号卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from paddlex.cls import transforms
import paddlex as pdx
# 下载和解压蔬菜分类数据集
veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
pdx.utils.download_and_decompress(veg_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
transforms.RandomCrop(crop_size=224),
transforms.RandomHorizontalFlip(),
transforms.Normalize()
])
eval_transforms = transforms.Compose([
transforms.ResizeByShort(short_size=256),
transforms.CenterCrop(crop_size=224),
transforms.Normalize()
])
# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.ImageNet(
data_dir='vegetables_cls',
file_list='vegetables_cls/train_list.txt',
label_list='vegetables_cls/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.ImageNet(
data_dir='vegetables_cls',
file_list='vegetables_cls/val_list.txt',
label_list='vegetables_cls/labels.txt',
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/mobilenetv2/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
model = pdx.cls.MobileNetV2(num_classes=len(train_dataset.labels))
model.train(
num_epochs=10,
train_dataset=train_dataset,
train_batch_size=32,
eval_dataset=eval_dataset,
lr_decay_epochs=[4, 6, 8],
learning_rate=0.025,
save_dir='output/mobilenetv2',
use_vdl=True)
import os
# 选择使用0号卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import paddle.fluid as fluid
from paddlex.cls import transforms
import paddlex as pdx
# 下载和解压蔬菜分类数据集
veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
pdx.utils.download_and_decompress(veg_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms = transforms.Compose(
[transforms.RandomCrop(crop_size=224),
transforms.Normalize()])
eval_transforms = transforms.Compose([
transforms.ResizeByShort(short_size=256),
transforms.CenterCrop(crop_size=224),
transforms.Normalize()
])
# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.ImageNet(
data_dir='vegetables_cls',
file_list='vegetables_cls/train_list.txt',
label_list='vegetables_cls/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.ImageNet(
data_dir='vegetables_cls',
file_list='vegetables_cls/val_list.txt',
label_list='vegetables_cls/labels.txt',
transforms=eval_transforms)
# PaddleX支持自定义构建优化器
step_each_epoch = train_dataset.num_samples // 32
learning_rate = fluid.layers.cosine_decay(
learning_rate=0.025, step_each_epoch=step_each_epoch, epochs=10)
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(4e-5))
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/resnet50/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
model = pdx.cls.ResNet50(num_classes=len(train_dataset.labels))
model.train(
num_epochs=10,
train_dataset=train_dataset,
train_batch_size=32,
eval_dataset=eval_dataset,
optimizer=optimizer,
save_dir='output/resnet50',
use_vdl=True)
import os
# 选择使用0号卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from paddlex.det import transforms
import paddlex as pdx
# 下载和解压昆虫检测数据集
insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
pdx.utils.download_and_decompress(insect_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.Normalize(),
transforms.ResizeByShort(short_size=800, max_size=1333),
transforms.Padding(coarsest_stride=32)
])
eval_transforms = transforms.Compose([
transforms.Normalize(),
transforms.ResizeByShort(short_size=800, max_size=1333),
transforms.Padding(coarsest_stride=32),
])
# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.VOCDetection(
data_dir='insect_det',
file_list='insect_det/train_list.txt',
label_list='insect_det/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.VOCDetection(
data_dir='insect_det',
file_list='insect_det/val_list.txt',
label_list='insect_det/labels.txt',
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/faster_rcnn_r50_fpn/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
# num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
num_classes = len(train_dataset.labels) + 1
model = pdx.det.FasterRCNN(num_classes=num_classes)
model.train(
num_epochs=12,
train_dataset=train_dataset,
train_batch_size=2,
eval_dataset=eval_dataset,
learning_rate=0.0025,
lr_decay_epochs=[8, 11],
save_dir='output/faster_rcnn_r50_fpn',
use_vdl=True)
import os
# 选择使用0号卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from paddlex.det import transforms
import paddlex as pdx
# 下载和解压小度熊分拣数据集
xiaoduxiong_dataset = 'https://bj.bcebos.com/paddlex/datasets/xiaoduxiong_ins_det.tar.gz'
pdx.utils.download_and_decompress(xiaoduxiong_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.Normalize(),
transforms.ResizeByShort(short_size=800, max_size=1333),
transforms.Padding(coarsest_stride=32)
])
eval_transforms = transforms.Compose([
transforms.Normalize(),
transforms.ResizeByShort(short_size=800, max_size=1333),
transforms.Padding(coarsest_stride=32)
])
# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.CocoDetection(
data_dir='xiaoduxiong_ins_det/JPEGImages',
ann_file='xiaoduxiong_ins_det/train.json',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.CocoDetection(
data_dir='xiaoduxiong_ins_det/JPEGImages',
ann_file='xiaoduxiong_ins_det/val.json',
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/mask_rcnn_r50_fpn/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
# num_classes 需要设置为包含背景类的类别数,即: 目标类别数量 + 1
num_classes = len(train_dataset.labels) + 1
model = pdx.det.MaskRCNN(num_classes=num_classes)
model.train(
num_epochs=12,
train_dataset=train_dataset,
train_batch_size=1,
eval_dataset=eval_dataset,
learning_rate=0.00125,
warmup_steps=10,
lr_decay_epochs=[8, 11],
save_dir='output/mask_rcnn_r50_fpn',
use_vdl=True)
import os
# 选择使用0号卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from paddlex.det import transforms
import paddlex as pdx
# 下载和解压昆虫检测数据集
insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
pdx.utils.download_and_decompress(insect_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
transforms.MixupImage(mixup_epoch=250),
transforms.RandomDistort(),
transforms.RandomExpand(),
transforms.RandomCrop(),
transforms.Resize(target_size=608, interp='RANDOM'),
transforms.RandomHorizontalFlip(),
transforms.Normalize(),
])
eval_transforms = transforms.Compose([
transforms.Resize(target_size=608, interp='CUBIC'),
transforms.Normalize(),
])
# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.VOCDetection(
data_dir='insect_det',
file_list='insect_det/train_list.txt',
label_list='insect_det/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.VOCDetection(
data_dir='insect_det',
file_list='insect_det/val_list.txt',
label_list='insect_det/labels.txt',
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
num_classes = len(train_dataset.labels)
model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
model.train(
num_epochs=270,
train_dataset=train_dataset,
train_batch_size=8,
eval_dataset=eval_dataset,
learning_rate=0.000125,
lr_decay_epochs=[210, 240],
save_dir='output/yolov3_darknet53',
use_vdl=True)
import os
# 选择使用0号卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import paddlex as pdx
from paddlex.seg import transforms
# 下载和解压视盘分割数据集
optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
pdx.utils.download_and_decompress(optic_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.Resize(target_size=512),
transforms.RandomPaddingCrop(crop_size=500),
transforms.Normalize()
])
eval_transforms = transforms.Compose(
[transforms.Resize(512), transforms.Normalize()])
# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.SegDataset(
data_dir='optic_disc_seg',
file_list='optic_disc_seg/train_list.txt',
label_list='optic_disc_seg/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.SegDataset(
data_dir='optic_disc_seg',
file_list='optic_disc_seg/val_list.txt',
label_list='optic_disc_seg/labels.txt',
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/deeplab/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
num_classes = len(train_dataset.labels)
model = pdx.seg.DeepLabv3p(num_classes=num_classes)
model.train(
num_epochs=40,
train_dataset=train_dataset,
train_batch_size=4,
eval_dataset=eval_dataset,
learning_rate=0.01,
save_dir='output/deeplab',
use_vdl=True)
import os
# 选择使用0号卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import paddlex as pdx
from paddlex.seg import transforms
# 下载和解压视盘分割数据集
optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
pdx.utils.download_and_decompress(optic_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(), transforms.ResizeRangeScaling(),
transforms.RandomPaddingCrop(crop_size=512), transforms.Normalize()
])
eval_transforms = transforms.Compose([
transforms.ResizeByLong(long_size=512),
transforms.Padding(target_size=512), transforms.Normalize()
])
# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.SegDataset(
data_dir='optic_disc_seg',
file_list='optic_disc_seg/train_list.txt',
label_list='optic_disc_seg/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.SegDataset(
data_dir='optic_disc_seg',
file_list='optic_disc_seg/val_list.txt',
label_list='optic_disc_seg/labels.txt',
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/unet/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
num_classes = len(train_dataset.labels)
model = pdx.seg.HRNet(num_classes=num_classes)
model.train(
num_epochs=20,
train_dataset=train_dataset,
train_batch_size=4,
eval_dataset=eval_dataset,
learning_rate=0.01,
save_dir='output/hrnet',
use_vdl=True)
import os
# 选择使用0号卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import paddlex as pdx
from paddlex.seg import transforms
# 下载和解压视盘分割数据集
optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
pdx.utils.download_and_decompress(optic_dataset, path='./')
# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ResizeRangeScaling(),
transforms.RandomPaddingCrop(crop_size=512),
transforms.Normalize()
])
eval_transforms = transforms.Compose([
transforms.ResizeByLong(long_size=512),
transforms.Padding(target_size=512),
transforms.Normalize()
])
# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.SegDataset(
data_dir='optic_disc_seg',
file_list='optic_disc_seg/train_list.txt',
label_list='optic_disc_seg/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.SegDataset(
data_dir='optic_disc_seg',
file_list='optic_disc_seg/val_list.txt',
label_list='optic_disc_seg/labels.txt',
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/unet/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
num_classes = len(train_dataset.labels)
model = pdx.seg.UNet(num_classes=num_classes)
model.train(
num_epochs=20,
train_dataset=train_dataset,
train_batch_size=4,
eval_dataset=eval_dataset,
learning_rate=0.01,
save_dir='output/unet',
use_vdl=True)
...@@ -53,4 +53,4 @@ log_level = 2 ...@@ -53,4 +53,4 @@ log_level = 2
from . import interpret from . import interpret
__version__ = '1.0.4' __version__ = '1.0.5'
...@@ -18,6 +18,7 @@ import random ...@@ -18,6 +18,7 @@ import random
import os.path as osp import os.path as osp
import numpy as np import numpy as np
from PIL import Image, ImageEnhance from PIL import Image, ImageEnhance
import paddlex.utils.logging as logging
class ClsTransform: class ClsTransform:
...@@ -96,6 +97,10 @@ class Compose(ClsTransform): ...@@ -96,6 +97,10 @@ class Compose(ClsTransform):
if not isinstance(augmenters, list): if not isinstance(augmenters, list):
raise Exception( raise Exception(
"augmenters should be list type in func add_augmenters()") "augmenters should be list type in func add_augmenters()")
transform_names = [type(x).__name__ for x in self.transforms]
for aug in augmenters:
if type(aug).__name__ in transform_names:
logging.error("{} is already in ComposedTransforms, need to remove it from add_augmenters().".format(type(aug).__name__))
self.transforms = augmenters + self.transforms self.transforms = augmenters + self.transforms
......
...@@ -27,6 +27,7 @@ from PIL import Image, ImageEnhance ...@@ -27,6 +27,7 @@ from PIL import Image, ImageEnhance
from .imgaug_support import execute_imgaug from .imgaug_support import execute_imgaug
from .ops import * from .ops import *
from .box_utils import * from .box_utils import *
import paddlex.utils.logging as logging
class DetTransform: class DetTransform:
...@@ -156,6 +157,10 @@ class Compose(DetTransform): ...@@ -156,6 +157,10 @@ class Compose(DetTransform):
if not isinstance(augmenters, list): if not isinstance(augmenters, list):
raise Exception( raise Exception(
"augmenters should be list type in func add_augmenters()") "augmenters should be list type in func add_augmenters()")
transform_names = [type(x).__name__ for x in self.transforms]
for aug in augmenters:
if type(aug).__name__ in transform_names:
logging.error("{} is already in ComposedTransforms, need to remove it from add_augmenters().".format(type(aug).__name__))
self.transforms = augmenters + self.transforms self.transforms = augmenters + self.transforms
......
...@@ -21,6 +21,7 @@ import numpy as np ...@@ -21,6 +21,7 @@ import numpy as np
from PIL import Image from PIL import Image
import cv2 import cv2
from collections import OrderedDict from collections import OrderedDict
import paddlex.utils.logging as logging
class SegTransform: class SegTransform:
...@@ -112,6 +113,10 @@ class Compose(SegTransform): ...@@ -112,6 +113,10 @@ class Compose(SegTransform):
if not isinstance(augmenters, list): if not isinstance(augmenters, list):
raise Exception( raise Exception(
"augmenters should be list type in func add_augmenters()") "augmenters should be list type in func add_augmenters()")
transform_names = [type(x).__name__ for x in self.transforms]
for aug in augmenters:
if type(aug).__name__ in transform_names:
logging.error("{} is already in ComposedTransforms, need to remove it from add_augmenters().".format(type(aug).__name__))
self.transforms = augmenters + self.transforms self.transforms = augmenters + self.transforms
......
...@@ -47,9 +47,10 @@ def info(message="", use_color=False): ...@@ -47,9 +47,10 @@ def info(message="", use_color=False):
log(level=2, message=message, use_color=use_color) log(level=2, message=message, use_color=use_color)
def warning(message="", use_color=False): def warning(message="", use_color=True):
log(level=1, message=message, use_color=use_color) log(level=1, message=message, use_color=use_color)
def error(message="", use_color=False): def error(message="", use_color=True):
log(level=0, message=message, use_color=use_color) log(level=0, message=message, use_color=use_color)
sys.exit(-1)
...@@ -19,7 +19,7 @@ long_description = "PaddleX. A end-to-end deeplearning model development toolkit ...@@ -19,7 +19,7 @@ long_description = "PaddleX. A end-to-end deeplearning model development toolkit
setuptools.setup( setuptools.setup(
name="paddlex", name="paddlex",
version='1.0.4', version='1.0.5',
author="paddlex", author="paddlex",
author_email="paddlex@baidu.com", author_email="paddlex@baidu.com",
description=long_description, description=long_description,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册