提交 5b455c44 编写于 作者: F FlyingQianMM

Merge branch 'develop' of https://github.com/PaddlePaddle/PaddleX into develop_qh

......@@ -10,7 +10,7 @@ PaddleX对于图像分类、目标检测、实例分割和语义分割内置了
| :------- | :------------|
| 图像分类 | [RandomCrop](cls_transforms.html#randomcrop)[RandomHorizontalFlip](cls_transforms.html#randomhorizontalflip)[RandomVerticalFlip](cls_transforms.html#randomverticalflip)<br> [RandomRotate](cls_transforms.html#randomratate)[RandomDistort](cls_transforms.html#randomdistort) |
|目标检测<br>实例分割| [RandomHorizontalFlip](det_transforms.html#randomhorizontalflip)[RandomDistort](det_transforms.html#randomdistort)[RandomCrop](det_transforms.html#randomcrop)<br> [MixupImage](det_transforms.html#mixupimage)(仅支持YOLOv3模型)[RandomExpand](det_transforms.html#randomexpand) |
|语义分割 | [RandomHorizontalFlip](seg_transforms.html#randomhorizontalflip)[RandomVerticalFlip](seg_transforms.html#randomverticalflip)[RandomRangeScaling](seg_transforms.html#randomrangescaling)<br> [RandomStepScaling](seg_transforms.html#randomstepscaling)[RandomPaddingCrop](seg_transforms.html#randompaddingcrop)[RandomBlur](seg_transforms.html#randomblur)<br> [RandomRotation](seg_transforms.html#randomrotation)[RandomScaleAspect](seg_transforms.html#randomscaleaspect)[RandomDistort](seg_transforms.html#randomdistort) |
|语义分割 | [RandomHorizontalFlip](seg_transforms.html#randomhorizontalflip)[RandomVerticalFlip](seg_transforms.html#randomverticalflip)[RandomRangeScaling](seg_transforms.html#randomrangescaling)<br> [RandomStepScaling](seg_transforms.html#randomstepscaling)[RandomPaddingCrop](seg_transforms.html#randompaddingcrop)[RandomBlur](seg_transforms.html#randomblur)<br> [RandomRotate](seg_transforms.html#randomrotate)[RandomScaleAspect](seg_transforms.html#randomscaleaspect)[RandomDistort](seg_transforms.html#randomdistort) |
## imgaug增强库的支持
......
......@@ -120,7 +120,7 @@ paddlex.seg.transforms.RandomBlur(prob=0.1)
* **prob** (float): 图像模糊概率。默认为0.1。
## RandomRotation
## RandomRotate
```python
paddlex.seg.transforms.RandomRotate(rotate_range=15, im_padding_value=[127.5, 127.5, 127.5], label_padding_value=255)
```
......
模型压缩
============================
.. toctree::
:maxdepth: 2
prune.md
quant.md
# 模型裁剪
## 原理介绍
模型裁剪用于减小模型的计算量和体积,可以加快模型部署后的预测速度,是一种减小模型大小和降低模型计算复杂度的常用方式,通过裁剪卷积层中Kernel输出通道的大小及其关联层参数大小来实现,其关联裁剪的原理可参见[PaddleSlim相关文档](https://paddlepaddle.github.io/PaddleSlim/algo/algo.html#id16)**一般而言,在同等模型精度前提下,数据复杂度越低,模型可以被裁剪的比例就越高**
## 裁剪方法
PaddleX提供了两种方式:
**1.用户自行计算裁剪配置(推荐),整体流程包含三个步骤,**
> **第一步**: 使用数据集训练原始模型
> **第二步**:利用第一步训练好的模型,在验证数据集上计算模型中各个参数的敏感度,并将敏感度信息存储至本地文件
> **第三步**:使用数据集训练裁剪模型(与第一步差异在于需要在`train`接口中,将第二步计算得到的敏感信息文件传给接口的`sensitivities_file`参数)
> 在如上三个步骤中,**相当于模型共需要训练两遍**,分别对应第一步和第三步,但其中第三步训练的是裁剪后的模型,因此训练速度较第一步会更快。
> 第二步会遍历模型中的部分裁剪参数,分别计算各个参数裁剪后对于模型在验证集上效果的影响,**因此会反复在验证集上评估多次**。
**2.使用PaddleX内置的裁剪方案**
> PaddleX内置的模型裁剪方案是**基于标准数据集**上计算得到的参数敏感度信息,由于不同数据集特征分布会有较大差异,所以该方案相较于第1种方案训练得到的模型**精度一般而言会更低**(**且用户自定义数据集与标准数据集特征分布差异越大,导致训练的模型精度会越低**),仅在用户想节省时间的前提下可以参考使用,使用方式只需一步,
> **一步**: 使用数据集训练裁剪模型,在训练调用`train`接口时,将接口中的`sensitivities_file`参数设置为'DEFAULT'字符串
> 注:各模型内置的裁剪方案分别依据的数据集为: 图像分类——ImageNet数据集、目标检测——PascalVOC数据集、语义分割——CityScape数据集
## 裁剪实验
基于上述两种方案,我们在PaddleX上使用样例数据进行了实验,在Tesla P40上实验指标如下所示,
### 图像分类
实验背景:使用MobileNetV2模型,数据集为蔬菜分类示例数据,见[使用教程-模型压缩-图像分类](../tutorials/compress/classification.md)
| 模型 | 裁剪情况 | 模型大小 | Top1准确率(%) |GPU预测速度 | CPU预测速度 |
| :-----| :--------| :-------- | :---------- |:---------- |:----------|
|MobileNetV2 | 无裁剪(原模型)| 13.0M | 97.50|6.47ms |47.44ms |
|MobileNetV2 | 方案一(eval_metric_loss=0.10) | 2.1M | 99.58 |5.03ms |20.22ms |
|MobileNetV2 | 方案二(eval_metric_loss=0.10) | 6.0M | 99.58 |5.42ms |29.06ms |
### 目标检测
实验背景:使用YOLOv3-MobileNetV1模型,数据集为昆虫检测示例数据,见[使用教程-模型压缩-目标检测](../tutorials/compress/detection.md)
| 模型 | 裁剪情况 | 模型大小 | MAP(%) |GPU预测速度 | CPU预测速度 |
| :-----| :--------| :-------- | :---------- |:---------- | :---------|
|YOLOv3-MobileNetV1 | 无裁剪(原模型)| 139M | 67.57| 14.88ms |976.42ms |
|YOLOv3-MobileNetV1 | 方案一(eval_metric_loss=0.10) | 34M | 75.49 |10.60ms |558.49ms |
|YOLOv3-MobileNetV1 | 方案二(eval_metric_loss=0.05) | 29M | 50.27| 9.43ms |360.46ms |
### 语义分割
实验背景:使用UNet模型,数据集为视盘分割示例数据, 见[使用教程-模型压缩-语义分割](../tutorials/compress/segmentation.md)
| 模型 | 裁剪情况 | 模型大小 | mIOU(%) |GPU预测速度 | CPU预测速度 |
| :-----| :--------| :-------- | :---------- |:---------- | :---------|
|UNet | 无裁剪(原模型)| 77M | 91.22 |33.28ms |9523.55ms |
|UNet | 方案一(eval_metric_loss=0.10) |26M | 90.37 |21.04ms |3936.20ms |
|UNet | 方案二(eval_metric_loss=0.10) |23M | 91.21 |18.61ms |3447.75ms |
# 模型量化
## 原理介绍
为了满足低内存带宽、低功耗、低计算资源占用以及低模型存储等需求,定点量化被提出。为此我们提供了训练后量化,该量化使用KL散度确定量化比例因子,将FP32模型转成INT8模型,且不需要重新训练,可以快速得到量化模型。
## 使用PaddleX量化模型
PaddleX提供了`export_quant_model`接口,让用户以接口的形式完成模型以post_quantization方式量化并导出。点击查看[量化接口使用文档](../apis/slim.md)
## 量化性能对比
模型量化后的性能对比指标请查阅[PaddleSlim模型库](https://paddlepaddle.github.io/PaddleSlim/model_zoo.html)
......@@ -96,6 +96,17 @@ cmake .. \
make
```
**注意:** linux环境下编译会自动下载OPENCV, PaddleX-Encryption和YAML,如果编译环境无法访问外网,可手动下载:
- [opencv3gcc4.8.tar.bz2](https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2)
- [paddlex-encryption.zip](https://bj.bcebos.com/paddlex/tools/paddlex-encryption.zip)
- [yaml-cpp.zip](https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip)
opencv3gcc4.8.tar.bz2文件下载后解压,然后在script/build.sh中指定`OPENCE_DIR`为解压后的路径。
paddlex-encryption.zip文件下载后解压,然后在script/build.sh中指定`ENCRYPTION_DIR`为解压后的路径。
yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip` 中的网址,改为下载文件的路径。
修改脚本设置好主要参数后,执行`build`脚本:
```shell
......@@ -104,8 +115,9 @@ make
### Step5: 预测及可视化
参考[导出inference模型](../../deploy_python.html#inference)将模型导出为inference格式模型。
**注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../../upgrade_version.md)对模型版本进行升级。**
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../deploy_python.html#inference)将模型导出为部署格式。**
> **注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型(模型版本可查看model.yml文件中的version字段)暂时无法直接用于预测部署,参考[模型版本升级](../../upgrade_version.md)对模型版本进行升级。**
编译成功后,预测demo的可执行程序分别为`build/demo/detector``build/demo/classifer``build/demo/segmenter`,用户可根据自己的模型类型选择,其主要命令参数说明如下:
......@@ -117,7 +129,7 @@ make
| use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0) |
| use_trt | 是否使用 TensorTr 预测, 支持值为0或1(默认值为0) |
| gpu_id | GPU 设备ID, 默认值为0 |
| save_dir | 保存可视化结果的路径, 默认值为"output",classfier无该参数 |
| save_dir | 保存可视化结果的路径, 默认值为"output",**classfier无该参数** |
## 样例
......
......@@ -86,7 +86,14 @@ PaddlePaddle C++ 预测库针对不同的`CPU`,`CUDA`,以及是否支持Tens
| OPENCV_DIR | OpenCV的安装路径, |
| PADDLE_DIR | Paddle c++预测库的路径 |
**注意:** 1. 使用`CPU`版预测库,请把`WITH_GPU`的``去掉勾 2. 如果使用的是`openblas`版本,请把`WITH_MKL`的``去掉勾
**注意:**
1. 使用`CPU`版预测库,请把`WITH_GPU`的``去掉勾
2. 如果使用的是`openblas`版本,请把`WITH_MKL`的``去掉勾
3. Windows环境下编译会自动下载YAML,如果编译环境无法访问外网,可手动下载: [yaml-cpp.zip](https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip)
yaml-cpp.zip文件下载后无需解压,在cmake/yaml.cmake中将`URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip` 中的网址,改为下载文件的路径。
![step4](../../images/vs2019_step5.png)
......@@ -99,8 +106,10 @@ PaddlePaddle C++ 预测库针对不同的`CPU`,`CUDA`,以及是否支持Tens
### Step5: 预测及可视化
参考[导出inference模型](../deploy_python.html#inference)将模型导出为inference格式模型。
**注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型暂时无法直接用于预测部署,参考[模型版本升级](../../upgrade_version.md)对模型版本进行升级。**
**在加载模型前,请检查你的模型目录中文件应该包括`model.yml`、`__model__`和`__params__`三个文件。如若不满足这个条件,请参考[模型导出为Inference文档](../deploy_python.html#inference)将模型导出为部署格式。**
**注意:由于PaddleX代码的持续更新,版本低于1.0.0的模型(模型版本可查看model.yml文件中的version字段)暂时无法直接用于预测部署,参考[模型版本升级](../../upgrade_version.md)对模型版本进行升级。**
上述`Visual Studio 2019`编译产出的可执行文件在`out\build\x64-Release`目录下,打开`cmd`,并切换到该目录:
......
......@@ -53,4 +53,4 @@ log_level = 2
from . import interpret
__version__ = '1.0.2.github'
__version__ = '1.0.4'
......@@ -209,8 +209,8 @@ def GenerateMiniBatch(batch_data):
padding_batch = []
for data in batch_data:
im_c, im_h, im_w = data[0].shape[:]
padding_im = np.zeros((im_c, max_shape[1], max_shape[2]),
dtype=np.float32)
padding_im = np.zeros(
(im_c, max_shape[1], max_shape[2]), dtype=np.float32)
padding_im[:, :im_h, :im_w] = data[0]
padding_batch.append((padding_im, ) + data[1:])
return padding_batch
......@@ -226,8 +226,8 @@ class Dataset:
if num_workers == 'auto':
import multiprocessing as mp
num_workers = mp.cpu_count() // 2 if mp.cpu_count() // 2 < 8 else 8
if platform.platform().startswith(
"Darwin") or platform.platform().startswith("Windows"):
if platform.platform().startswith("Darwin") or platform.platform(
).startswith("Windows"):
parallel_method = 'thread'
if transforms is None:
raise Exception("transform should be defined.")
......
......@@ -190,11 +190,6 @@ class DeepLabv3p(BaseAPI):
if mode == 'train':
self.optimizer.minimize(model_out)
outputs['loss'] = model_out
elif mode == 'eval':
outputs['loss'] = model_out[0]
outputs['pred'] = model_out[1]
outputs['label'] = model_out[2]
outputs['mask'] = model_out[3]
else:
outputs['pred'] = model_out[0]
outputs['logit'] = model_out[1]
......@@ -336,18 +331,26 @@ class DeepLabv3p(BaseAPI):
for step, data in tqdm.tqdm(
enumerate(data_generator()), total=total_steps):
images = np.array([d[0] for d in data])
labels = np.array([d[1] for d in data])
_, _, im_h, im_w = images.shape
labels = list()
for d in data:
padding_label = np.zeros(
(1, im_h, im_w)).astype('int64') + self.ignore_index
padding_label[:, :im_h, :im_w] = d[1]
labels.append(padding_label)
labels = np.array(labels)
num_samples = images.shape[0]
if num_samples < batch_size:
num_pad_samples = batch_size - num_samples
pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
images = np.concatenate([images, pad_images])
feed_data = {'image': images}
outputs = self.exe.run(
self.parallel_test_prog,
feed=feed_data,
fetch_list=list(self.test_outputs.values()),
return_numpy=True)
outputs = self.exe.run(self.parallel_test_prog,
feed=feed_data,
fetch_list=list(self.test_outputs.values()),
return_numpy=True)
pred = outputs[0]
if num_samples < batch_size:
pred = pred[0:num_samples]
......@@ -364,8 +367,7 @@ class DeepLabv3p(BaseAPI):
metrics = OrderedDict(
zip(['miou', 'category_iou', 'macc', 'category_acc', 'kappa'],
[miou, category_iou, macc, category_acc,
conf_mat.kappa()]))
[miou, category_iou, macc, category_acc, conf_mat.kappa()]))
if return_details:
eval_details = {
'confusion_matrix': conf_mat.confusion_matrix.tolist()
......@@ -394,10 +396,9 @@ class DeepLabv3p(BaseAPI):
transforms=self.test_transforms, mode='test')
im, im_info = self.test_transforms(im_file)
im = np.expand_dims(im, axis=0)
result = self.exe.run(
self.test_prog,
feed={'image': im},
fetch_list=list(self.test_outputs.values()))
result = self.exe.run(self.test_prog,
feed={'image': im},
fetch_list=list(self.test_outputs.values()))
pred = result[0]
pred = np.squeeze(pred).astype('uint8')
logit = result[1]
......@@ -413,6 +414,6 @@ class DeepLabv3p(BaseAPI):
pred = pred[0:h, 0:w]
logit = logit[0:h, 0:w, :]
else:
raise Exception("Unexpected info '{}' in im_info".format(
info[0]))
raise Exception("Unexpected info '{}' in im_info".format(info[
0]))
return {'label_map': pred, 'score_map': logit}
......@@ -135,7 +135,8 @@ class DeepLabv3p(object):
param_attr = fluid.ParamAttr(
name=name_scope + 'weights',
regularizer=None,
initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
initializer=fluid.initializer.TruncatedNormal(
loc=0.0, scale=0.06))
with scope('encoder'):
channel = 256
with scope("image_pool"):
......@@ -151,8 +152,8 @@ class DeepLabv3p(object):
padding=0,
param_attr=param_attr))
input_shape = fluid.layers.shape(input)
image_avg = fluid.layers.resize_bilinear(
image_avg, input_shape[2:])
image_avg = fluid.layers.resize_bilinear(image_avg,
input_shape[2:])
with scope("aspp0"):
aspp0 = bn_relu(
......@@ -244,7 +245,8 @@ class DeepLabv3p(object):
param_attr = fluid.ParamAttr(
name=name_scope + 'weights',
regularizer=None,
initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
initializer=fluid.initializer.TruncatedNormal(
loc=0.0, scale=0.06))
with scope('decoder'):
with scope('concat'):
decode_shortcut = bn_relu(
......@@ -326,9 +328,6 @@ class DeepLabv3p(object):
if self.mode == 'train':
inputs['label'] = fluid.data(
dtype='int32', shape=[None, 1, None, None], name='label')
elif self.mode == 'eval':
inputs['label'] = fluid.data(
dtype='int32', shape=[None, 1, None, None], name='label')
return inputs
def build_net(self, inputs):
......@@ -351,7 +350,8 @@ class DeepLabv3p(object):
name=name_scope + 'weights',
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0),
initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
initializer=fluid.initializer.TruncatedNormal(
loc=0.0, scale=0.01))
with scope('logit'):
with fluid.name_scope('last_conv'):
logit = conv(
......
......@@ -92,6 +92,12 @@ class Compose(ClsTransform):
outputs = (im, label)
return outputs
def add_augmenters(self, augmenters):
if not isinstance(augmenters, list):
raise Exception(
"augmenters should be list type in func add_augmenters()")
self.transforms = augmenters + self.transforms.transforms
class RandomCrop(ClsTransform):
"""对图像进行随机剪裁,模型训练时的数据增强操作。
......@@ -461,3 +467,56 @@ class ArrangeClassifier(ClsTransform):
else:
outputs = (im, )
return outputs
class ComposedClsTransforms(Compose):
""" 分类模型的基础Transforms流程,具体如下
训练阶段:
1. 随机从图像中crop一块子图,并resize成crop_size大小
2. 将1的输出按0.5的概率随机进行水平翻转
3. 将图像进行归一化
验证/预测阶段:
1. 将图像按比例Resize,使得最小边长度为crop_size[0] * 1.14
2. 从图像中心crop出一个大小为crop_size的图像
3. 将图像进行归一化
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
crop_size(int|list): 输入模型里的图像大小
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
crop_size=[224, 224],
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]):
width = crop_size
if isinstance(crop_size, list):
if crop_size[0] != crop_size[1]:
raise Exception(
"In classifier model, width and height should be equal, please modify your parameter `crop_size`"
)
width = crop_size[0]
if width % 32 != 0:
raise Exception(
"In classifier model, width and height should be multiple of 32, e.g 224、256、320...., please modify your parameter `crop_size`"
)
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
RandomCrop(crop_size=width), RandomHorizontalFlip(prob=0.5),
Normalize(
mean=mean, std=std)
]
else:
# 验证/预测时的transforms
transforms = [
ResizeByShort(short_size=int(width * 1.14)),
CenterCrop(crop_size=width), Normalize(
mean=mean, std=std)
]
super(ComposedClsTransforms, self).__init__(transforms)
......@@ -152,6 +152,12 @@ class Compose(DetTransform):
outputs = (im, im_info)
return outputs
def add_augmenters(self, augmenters):
if not isinstance(augmenters, list):
raise Exception(
"augmenters should be list type in func add_augmenters()")
self.transforms = augmenters + self.transforms.transforms
class ResizeByShort(DetTransform):
"""根据图像的短边调整图像大小(resize)。
......@@ -1227,3 +1233,108 @@ class ArrangeYOLOv3(DetTransform):
im_shape = im_info['image_shape']
outputs = (im, im_shape)
return outputs
class ComposedRCNNTransforms(Compose):
""" RCNN模型(faster-rcnn/mask-rcnn)图像处理流程,具体如下,
训练阶段:
1. 随机以0.5的概率将图像水平翻转
2. 图像归一化
3. 图像按比例Resize,scale计算方式如下
scale = min_max_size[0] / short_size_of_image
if max_size_of_image * scale > min_max_size[1]:
scale = min_max_size[1] / max_size_of_image
4. 将3步骤的长宽进行padding,使得长宽为32的倍数
验证阶段:
1. 图像归一化
2. 图像按比例Resize,scale计算方式同上训练阶段
3. 将2步骤的长宽进行padding,使得长宽为32的倍数
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
min_max_size(list): 图像在缩放时,最小边和最大边的约束条件
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
min_max_size=[800, 1333],
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]):
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
RandomHorizontalFlip(prob=0.5), Normalize(
mean=mean, std=std), ResizeByShort(
short_size=min_max_size[0], max_size=min_max_size[1]),
Padding(coarsest_stride=32)
]
else:
# 验证/预测时的transforms
transforms = [
Normalize(
mean=mean, std=std), ResizeByShort(
short_size=min_max_size[0], max_size=min_max_size[1]),
Padding(coarsest_stride=32)
]
super(ComposedRCNNTransforms, self).__init__(transforms)
class ComposedYOLOTransforms(Compose):
"""YOLOv3模型的图像预处理流程,具体如下,
训练阶段:
1. 在前mixup_epoch轮迭代中,使用MixupImage策略,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#mixupimage
2. 对图像进行随机扰动,包括亮度,对比度,饱和度和色调
3. 随机扩充图像,见https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/det_transforms.html#randomexpand
4. 随机裁剪图像
5. 将4步骤的输出图像Resize成shape参数的大小
6. 随机0.5的概率水平翻转图像
7. 图像归一化
验证/预测阶段:
1. 将图像Resize成shape参数大小
2. 图像归一化
Args:
mode(str): 图像处理流程所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
shape(list): 输入模型中图像的大小,输入模型的图像会被Resize成此大小
mixup_epoch(int): 模型训练过程中,前mixup_epoch会使用mixup策略
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
shape=[608, 608],
mixup_epoch=250,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]):
width = shape
if isinstance(shape, list):
if shape[0] != shape[1]:
raise Exception(
"In YOLOv3 model, width and height should be equal")
width = shape[0]
if width % 32 != 0:
raise Exception(
"In YOLOv3 model, width and height should be multiple of 32, e.g 224、256、320...."
)
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
MixupImage(mixup_epoch=mixup_epoch), RandomDistort(),
RandomExpand(), RandomCrop(), Resize(
target_size=width,
interp='RANDOM'), RandomHorizontalFlip(), Normalize(
mean=mean, std=std)
]
else:
# 验证/预测时的transforms
transforms = [
Resize(
target_size=width, interp='CUBIC'), Normalize(
mean=mean, std=std)
]
super(ComposedYOLOTransforms, self).__init__(transforms)
......@@ -108,6 +108,12 @@ class Compose(SegTransform):
outputs = (im, im_info)
return outputs
def add_augmenters(self, augmenters):
if not isinstance(augmenters, list):
raise Exception(
"augmenters should be list type in func add_augmenters()")
self.transforms = augmenters + self.transforms.transforms
class RandomHorizontalFlip(SegTransform):
"""以一定的概率对图像进行水平翻转。当存在标注图像时,则同步进行翻转。
......@@ -1088,3 +1094,39 @@ class ArrangeSegmenter(SegTransform):
return (im, im_info)
else:
return (im, )
class ComposedSegTransforms(Compose):
""" 语义分割模型(UNet/DeepLabv3p)的图像处理流程,具体如下
训练阶段:
1. 随机对图像以0.5的概率水平翻转
2. 按不同的比例随机Resize原图
3. 从原图中随机crop出大小为train_crop_size大小的子图,如若crop出来的图小于train_crop_size,则会将图padding到对应大小
4. 图像归一化
预测阶段:
1. 图像归一化
Args:
mode(str): 图像处理所处阶段,训练/验证/预测,分别对应'train', 'eval', 'test'
train_crop_size(list): 模型训练阶段,随机从原图crop的大小
mean(list): 图像均值
std(list): 图像方差
"""
def __init__(self,
mode,
train_crop_size=[769, 769],
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]):
if mode == 'train':
# 训练时的transforms,包含数据增强
transforms = [
RandomHorizontalFlip(prob=0.5), ResizeStepScaling(),
RandomPaddingCrop(crop_size=train_crop_size), Normalize(
mean=mean, std=std)
]
else:
# 验证/预测时的transforms
transforms = [Resize(512), Normalize(mean=mean, std=std)]
super(ComposedSegTransforms, self).__init__(transforms)
......@@ -97,8 +97,6 @@ class Predictor:
config.disable_glog_info()
if memory_optimize:
config.enable_memory_optim()
else:
config.diable_memory_optim()
# 开启计算图分析优化,包括OP融合等
config.switch_ir_optim(True)
......
......@@ -110,7 +110,7 @@ class LabelMe2COCO(X2COCO):
annotation["segmentation"] = [list(np.asarray(points).flatten())]
annotation["iscrowd"] = 0
annotation["image_id"] = image_id + 1
annotation["bbox"] = list(map(float, get_bbox(height, width, points)))
annotation["bbox"] = list(map(float, self.get_bbox(height, width, points)))
annotation["area"] = annotation["bbox"][2] * annotation["bbox"][3]
annotation["category_id"] = label_to_num[label]
annotation["id"] = object_id + 1
......@@ -254,4 +254,4 @@ class EasyData2COCO(X2COCO):
segmentation.append(contour_list)
self.annotations_list.append(
self.generate_polygon_anns_field(points, segmentation, label, image_id, object_id,
label_to_num))
\ No newline at end of file
label_to_num))
......@@ -19,7 +19,7 @@ long_description = "PaddleX. A end-to-end deeplearning model development toolkit
setuptools.setup(
name="paddlex",
version='1.0.2',
version='1.0.4',
author="paddlex",
author_email="paddlex@baidu.com",
description=long_description,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册