Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
5a2ad684
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
5a2ad684
编写于
5月 16, 2020
作者:
S
SunAhong1993
提交者:
GitHub
5月 16, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update visualize.py
上级
a2c278a7
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
7 addition
and
3 deletion
+7
-3
paddlex/cv/models/explanation/visualize.py
paddlex/cv/models/explanation/visualize.py
+7
-3
未找到文件。
paddlex/cv/models/explanation/visualize.py
浏览文件 @
5a2ad684
...
...
@@ -57,8 +57,10 @@ def get_lime_explaier(img, model, dataset, num_samples=3000, batch_size=50):
image
=
image
.
astype
(
'float32'
)
for
i
in
range
(
image
.
shape
[
0
]):
image
[
i
]
=
cv2
.
cvtColor
(
image
[
i
],
cv2
.
COLOR_RGB2BGR
)
tmp_transforms
=
copy
.
deepcopy
(
model
.
test_transforms
.
transforms
)
model
.
test_transforms
.
transforms
=
model
.
test_transforms
.
transforms
[
-
2
:]
out
=
model
.
explanation_predict
(
image
)
model
.
test_transforms
.
transforms
=
tmp_transforms
return
out
[
0
]
labels_name
=
None
if
dataset
is
not
None
:
...
...
@@ -74,15 +76,19 @@ def get_lime_explaier(img, model, dataset, num_samples=3000, batch_size=50):
def
get_normlime_explaier
(
img
,
model
,
dataset
,
num_samples
=
3000
,
batch_size
=
50
,
save_dir
=
'./'
):
def
precompute_predict_func
(
image
):
image
=
image
.
astype
(
'float32'
)
tmp_transforms
=
copy
.
deepcopy
(
model
.
test_transforms
.
transforms
)
model
.
test_transforms
.
transforms
=
model
.
test_transforms
.
transforms
[
-
2
:]
out
=
model
.
explanation_predict
(
image
)
model
.
test_transforms
.
transforms
=
tmp_transforms
return
out
[
0
]
def
predict_func
(
image
):
image
=
image
.
astype
(
'float32'
)
for
i
in
range
(
image
.
shape
[
0
]):
image
[
i
]
=
cv2
.
cvtColor
(
image
[
i
],
cv2
.
COLOR_RGB2BGR
)
tmp_transforms
=
copy
.
deepcopy
(
model
.
test_transforms
.
transforms
)
model
.
test_transforms
.
transforms
=
model
.
test_transforms
.
transforms
[
-
2
:]
out
=
model
.
explanation_predict
(
image
)
model
.
test_transforms
.
transforms
=
tmp_transforms
return
out
[
0
]
labels_name
=
None
if
dataset
is
not
None
:
...
...
@@ -118,6 +124,4 @@ def precompute_for_normlime(predict_func, dataset, num_samples=3000, batch_size=
num_samples
=
num_samples
,
batch_size
=
batch_size
,
save_dir
=
save_dir
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录