提交 3ce491c4 编写于 作者: C Channingss

add openvino

cmake_minimum_required(VERSION 3.0)
project(PaddleX CXX C)
option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." OFF)
SET(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
SET(OPENVINO_LIB "" CACHE PATH "Location of libraries")
SET(OPENCV_DIR "" CACHE PATH "Location of libraries")
include(cmake/yaml-cpp.cmake)
include_directories("${CMAKE_SOURCE_DIR}/")
link_directories("${CMAKE_CURRENT_BINARY_DIR}")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/ext/yaml-cpp/src/ext-yaml-cpp/include")
link_directories("${CMAKE_CURRENT_BINARY_DIR}/ext/yaml-cpp/lib")
macro(safe_set_static_flag)
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/MD")
string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}")
endif(${flag_var} MATCHES "/MD")
endforeach(flag_var)
endmacro()
if (NOT DEFINED OPENVINO_LIB OR ${OPENVINO_LIB} STREQUAL "")
message(FATAL_ERROR "please set OPENVINO_LIB with -DOPENVINO_LIB=/path/influence_engine")
endif()
if (NOT DEFINED OPENCV_DIR OR ${OPENCV_DIR} STREQUAL "")
message(FATAL_ERROR "please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv")
endif()
include_directories("${OPENVINO_LIB}/")
include_directories("${OPENVINO_LIB}/include/")
link_directories("${OPENVINO_LIB}/lib")
link_directories("${OPENVINO_LIB}/externel/tbb/lib/")
if (WIN32)
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH)
unset(OpenCV_DIR CACHE)
else ()
find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/share/OpenCV NO_DEFAULT_PATH)
endif ()
include_directories(${OpenCV_INCLUDE_DIRS})
if (WIN32)
add_definitions("/DGOOGLE_GLOG_DLL_DECL=")
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT")
if (WITH_STATIC_LIB)
safe_set_static_flag()
add_definitions(-DSTATIC_LIB)
endif()
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -o2 -fopenmp -std=c++11")
set(CMAKE_STATIC_LIBRARY_PREFIX "")
endif()
if (NOT WIN32)
set(NGRAPH_PATH "${OPENVINO_LIB}")
if(EXISTS ${NGRAPH_PATH})
include(GNUInstallDirs)
include_directories("${NGRAPH_PATH}/include")
link_directories("${NGRAPH_PATH}/${CMAKE_INSTALL_LIBDIR}")
set(NGRAPH_LIB ${NGRAPH_PATH}/${CMAKE_INSTALL_LIBDIR}/libngraph${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
endif()
if(WITH_STATIC_LIB)
set(DEPS ${OPENVINO_LIB}/lib/intel64/libinference_engine${CMAKE_STATIC_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENVINO_LIB}/lib/intel64/libinference_engine_legacy${CMAKE_STATIC_LIBRARY_SUFFIX})
else()
set(DEPS ${OPENVINO_LIB}/lib/intel64/libinference_engine${CMAKE_SHARED_LIBRARY_SUFFIX})
set(DEPS ${DEPS} ${OPENVINO_LIB}/lib/intel64/libinference_engine_legacy${CMAKE_SHARED_LIBRARY_SUFFIX})
endif()
if (NOT WIN32)
set(DEPS ${DEPS}
glog gflags z yaml-cpp
)
else()
set(DEPS ${DEPS}
glog gflags_static libprotobuf zlibstatic xxhash libyaml-cppmt)
set(DEPS ${DEPS} libcmt shlwapi)
endif(NOT WIN32)
if (NOT WIN32)
set(EXTERNAL_LIB "-ldl -lrt -lgomp -lz -lm -lpthread")
set(DEPS ${DEPS} ${EXTERNAL_LIB})
endif()
set(DEPS ${DEPS} ${OpenCV_LIBS})
add_executable(classifier src/classifier.cpp src/transforms.cpp src/paddlex.cpp)
ADD_DEPENDENCIES(classifier ext-yaml-cpp)
target_link_libraries(classifier ${DEPS})
{
"configurations": [
{
"name": "x64-Release",
"generator": "Ninja",
"configurationType": "RelWithDebInfo",
"inheritEnvironments": [ "msvc_x64_x64" ],
"buildRoot": "${projectDir}\\out\\build\\${name}",
"installRoot": "${projectDir}\\out\\install\\${name}",
"cmakeCommandArgs": "",
"buildCommandArgs": "-v",
"ctestCommandArgs": "",
"variables": [
{
"name": "OPENCV_DIR",
"value": "C:/projects/opencv",
"type": "PATH"
},
{
"name": "PADDLE_DIR",
"value": "C:/projects/fluid_install_dir_win_cpu_1.6/fluid_install_dir_win_cpu_1.6",
"type": "PATH"
},
{
"name": "CMAKE_BUILD_TYPE",
"value": "Release",
"type": "STRING"
},
{
"name": "WITH_STATIC_LIB",
"value": "True",
"type": "BOOL"
},
{
"name": "WITH_MKL",
"value": "True",
"type": "BOOL"
},
{
"name": "WITH_GPU",
"value": "False",
"type": "BOOL"
}
]
}
]
}
\ No newline at end of file
find_package(Git REQUIRED)
include(ExternalProject)
message("${CMAKE_BUILD_TYPE}")
ExternalProject_Add(
ext-yaml-cpp
URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip
URL_MD5 9542d6de397d1fbd649ed468cb5850e6
CMAKE_ARGS
-DYAML_CPP_BUILD_TESTS=OFF
-DYAML_CPP_BUILD_TOOLS=OFF
-DYAML_CPP_INSTALL=OFF
-DYAML_CPP_BUILD_CONTRIB=OFF
-DMSVC_SHARED_RT=OFF
-DBUILD_SHARED_LIBS=OFF
-DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG}
-DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=${CMAKE_BINARY_DIR}/ext/yaml-cpp/lib
-DCMAKE_ARCHIVE_OUTPUT_DIRECTORY=${CMAKE_BINARY_DIR}/ext/yaml-cpp/lib
PREFIX "${CMAKE_BINARY_DIR}/ext/yaml-cpp"
# Disable install step
INSTALL_COMMAND ""
LOG_DOWNLOAD ON
LOG_BUILD 1
)
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include "yaml-cpp/yaml.h"
#ifdef _WIN32
#define OS_PATH_SEP "\\"
#else
#define OS_PATH_SEP "/"
#endif
namespace PaddleX {
// Inference model configuration parser
class ConfigPaser {
public:
ConfigPaser() {}
~ConfigPaser() {}
bool load_config(const std::string& model_dir,
const std::string& cfg = "model.yml") {
// Load as a YAML::Node
YAML::Node config;
config = YAML::LoadFile(model_dir + OS_PATH_SEP + cfg);
if (config["Transforms"].IsDefined()) {
YAML::Node transforms_ = config["Transforms"];
} else {
std::cerr << "There's no field 'Transforms' in model.yml" << std::endl;
return false;
}
return true;
}
YAML::Node Transforms_;
};
} // namespace PaddleDetection
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <functional>
#include <iostream>
#include <numeric>
#include "yaml-cpp/yaml.h"
#ifdef _WIN32
#define OS_PATH_SEP "\\"
#else
#define OS_PATH_SEP "/"
#endif
#include <inference_engine.hpp>
#include "include/paddlex/config_parser.h"
#include "include/paddlex/results.h"
#include "include/paddlex/transforms.h"
using namespace InferenceEngine;
namespace PaddleX {
class Model {
public:
void Init(const std::string& model_dir,
const std::string& cfg_dir,
std::string device) {
create_predictor(model_dir, cfg_dir, device);
}
void create_predictor(const std::string& model_dir,
const std::string& cfg_dir,
std::string device);
bool load_config(const std::string& model_dir);
bool preprocess(cv::Mat* input_im, ImageBlob* blob);
bool predict(cv::Mat* im, ClsResult* result);
std::string type;
std::string name;
std::vector<std::string> labels;
Transforms transforms_;
ImageBlob inputs_;
float* outputs_;
ExecutableNetwork executable_network_;
CNNNetwork network_;
};
} // namespce of PaddleX
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <string>
#include <vector>
namespace PaddleX {
template <class T>
struct Mask {
std::vector<T> data;
std::vector<int> shape;
void clear() {
data.clear();
shape.clear();
}
};
struct Box {
int category_id;
std::string category;
float score;
std::vector<float> coordinate;
Mask<float> mask;
};
class BaseResult {
public:
std::string type = "base";
};
class ClsResult : public BaseResult {
public:
int category_id;
std::string category;
float score;
std::string type = "cls";
};
class DetResult : public BaseResult {
public:
std::vector<Box> boxes;
int mask_resolution;
std::string type = "det";
void clear() { boxes.clear(); }
};
class SegResult : public BaseResult {
public:
Mask<int64_t> label_map;
Mask<float> score_map;
void clear() {
label_map.clear();
score_map.clear();
}
};
} // namespce of PaddleX
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <yaml-cpp/yaml.h>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
namespace PaddleX {
// Object for storing all preprocessed data
class ImageBlob {
public:
// Original image height and width
std::vector<int> ori_im_size_ = std::vector<int>(2);
// Newest image height and width after process
std::vector<int> new_im_size_ = std::vector<int>(2);
// Image height and width before resize
std::vector<std::vector<int>> im_size_before_resize_;
// Reshape order
std::vector<std::string> reshape_order_;
// Resize scale
float scale = 1.0;
// Buffer for image data after preprocessing
std::vector<float> im_data_;
void clear() {
ori_im_size_.clear();
new_im_size_.clear();
im_size_before_resize_.clear();
reshape_order_.clear();
im_data_.clear();
}
};
// Abstraction of preprocessing opration class
class Transform {
public:
virtual void Init(const YAML::Node& item) = 0;
virtual bool Run(cv::Mat* im, ImageBlob* data) = 0;
};
class Normalize : public Transform {
public:
virtual void Init(const YAML::Node& item) {
mean_ = item["mean"].as<std::vector<float>>();
std_ = item["std"].as<std::vector<float>>();
}
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
std::vector<float> mean_;
std::vector<float> std_;
};
class ResizeByShort : public Transform {
public:
virtual void Init(const YAML::Node& item) {
short_size_ = item["short_size"].as<int>();
if (item["max_size"].IsDefined()) {
max_size_ = item["max_size"].as<int>();
} else {
max_size_ = -1;
}
};
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
float GenerateScale(const cv::Mat& im);
int short_size_;
int max_size_;
};
class ResizeByLong : public Transform {
public:
virtual void Init(const YAML::Node& item) {
long_size_ = item["long_size"].as<int>();
};
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int long_size_;
};
class Resize : public Transform {
public:
virtual void Init(const YAML::Node& item) {
if (item["target_size"].IsScalar()) {
height_ = item["target_size"].as<int>();
width_ = item["target_size"].as<int>();
interp_ = item["interp"].as<std::string>();
} else if (item["target_size"].IsSequence()) {
std::vector<int> target_size = item["target_size"].as<std::vector<int>>();
width_ = target_size[0];
height_ = target_size[1];
}
if (height_ <= 0 || width_ <= 0) {
std::cerr << "[Resize] target_size should greater than 0" << std::endl;
exit(-1);
}
}
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int height_;
int width_;
std::string interp_;
};
class CenterCrop : public Transform {
public:
virtual void Init(const YAML::Node& item) {
if (item["crop_size"].IsScalar()) {
height_ = item["crop_size"].as<int>();
width_ = item["crop_size"].as<int>();
} else if (item["crop_size"].IsSequence()) {
std::vector<int> crop_size = item["crop_size"].as<std::vector<int>>();
width_ = crop_size[0];
height_ = crop_size[1];
}
}
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int height_;
int width_;
};
class Padding : public Transform {
public:
virtual void Init(const YAML::Node& item) {
if (item["coarsest_stride"].IsDefined()) {
coarsest_stride_ = item["coarsest_stride"].as<int>();
if (coarsest_stride_ < 1) {
std::cerr << "[Padding] coarest_stride should greater than 0"
<< std::endl;
exit(-1);
}
}
if (item["target_size"].IsDefined()) {
if (item["target_size"].IsScalar()) {
width_ = item["target_size"].as<int>();
height_ = item["target_size"].as<int>();
} else if (item["target_size"].IsSequence()) {
width_ = item["target_size"].as<std::vector<int>>()[0];
height_ = item["target_size"].as<std::vector<int>>()[1];
}
}
if (item["im_padding_value"].IsDefined()) {
value_ = item["im_padding_value"].as<std::vector<float>>();
}
}
virtual bool Run(cv::Mat* im, ImageBlob* data);
private:
int coarsest_stride_ = -1;
int width_ = 0;
int height_ = 0;
std::vector<float> value_;
};
class Transforms {
public:
void Init(const YAML::Node& node, bool to_rgb = true);
std::shared_ptr<Transform> CreateTransform(const std::string& name);
bool Run(cv::Mat* im, ImageBlob* data);
private:
std::vector<std::shared_ptr<Transform>> transforms_;
bool to_rgb_ = true;
};
} // namespace PaddleX
# download pre-compiled opencv lib
OPENCV_URL=https://paddleseg.bj.bcebos.com/deploy/docker/opencv3gcc4.8.tar.bz2
if [ ! -d "./deps/opencv3gcc4.8" ]; then
mkdir -p deps
cd deps
wget -c ${OPENCV_URL}
tar xvfj opencv3gcc4.8.tar.bz2
rm -rf opencv3gcc4.8.tar.bz2
cd ..
fi
WITH_STATIC_LIB=OFF
OPENVINO_LIB=/usr/local/deployment_tools/inference_engine/
# OPENCV 路径, 如果使用自带预编译版本可不修改
OPENCV_DIR=$(pwd)/deps/opencv3gcc4.8/
sh $(pwd)/scripts/bootstrap.sh
rm -rf build
mkdir -p build
cd build
cmake .. \
-DOPENCV_DIR=${OPENCV_DIR} \
-DOPENVINO_LIB=${OPENVINO_LIB} \
-DWITH_STATIC_LIB=${WITH_STATIC_LIB}
make
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <glog/logging.h>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "include/paddlex/paddlex.h"
DEFINE_string(model_dir, "../../../openvino/model-optimizer/resnet18/best_model.xml", "Path of inference model");
DEFINE_string(cfg_dir, "../../../openvino/model-optimizer/resnet18/model.yml", "Path of inference model");
DEFINE_string(device, "CPU", "Device name");
DEFINE_string(image, "/chenlingchi/docker/unet_test.jpg", "Path of test image file");
DEFINE_string(image_list, "", "Path of test image list file");
int main(int argc, char** argv) {
// Parsing command-line
google::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_model_dir == "") {
std::cerr << "--model_dir need to be defined" << std::endl;
return -1;
}
if (FLAGS_image == "" & FLAGS_image_list == "") {
std::cerr << "--image or --image_list need to be defined" << std::endl;
return -1;
}
// 加载模型
PaddleX::Model model;
model.Init(FLAGS_model_dir, FLAGS_cfg_dir, FLAGS_device);
// 进行预测
if (FLAGS_image_list != "") {
std::ifstream inf(FLAGS_image_list);
if (!inf) {
std::cerr << "Fail to open file " << FLAGS_image_list << std::endl;
return -1;
}
std::string image_path;
while (getline(inf, image_path)) {
PaddleX::ClsResult result;
cv::Mat im = cv::imread(image_path, 1);
model.predict(&im, &result);
std::cout << "Predict label: " << result.category
<< ", label_id:" << result.category_id
<< ", score: " << result.score << std::endl;
}
} else {
PaddleX::ClsResult result;
cv::Mat im = cv::imread(FLAGS_image, 1);
model.predict(&im, &result);
std::cout << "Predict label: " << result.category
<< ", label_id:" << result.category_id
<< ", score: " << result.score << std::endl;
}
return 0;
}
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "include/paddlex/paddlex.h"
using namespace InferenceEngine;
namespace PaddleX {
void Model::create_predictor(const std::string& model_dir,
const std::string& cfg_dir,
std::string device) {
Core ie;
network_ = ie.ReadNetwork(model_dir, model_dir.substr(0, model_dir.size() - 4) + ".bin");
network_.setBatchSize(1);
InputInfo::Ptr input_info = network_.getInputsInfo().begin()->second;
input_info->getPreProcess().setResizeAlgorithm(RESIZE_BILINEAR);
input_info->setLayout(Layout::NCHW);
input_info->setPrecision(Precision::FP32);
executable_network_ = ie.LoadNetwork(network_, device);
load_config(cfg_dir);
}
template <typename T>
void matU8ToBlob(const cv::Mat& orig_image, InferenceEngine::Blob::Ptr& blob, int batchIndex = 0) {
InferenceEngine::SizeVector blobSize = blob->getTensorDesc().getDims();
const size_t width = blobSize[3];
const size_t height = blobSize[2];
const size_t channels = blobSize[1];
InferenceEngine::MemoryBlob::Ptr mblob = InferenceEngine::as<InferenceEngine::MemoryBlob>(blob);
if (!mblob) {
THROW_IE_EXCEPTION << "We expect blob to be inherited from MemoryBlob in matU8ToBlob, "
<< "but by fact we were not able to cast inputBlob to MemoryBlob";
}
// locked memory holder should be alive all time while access to its buffer happens
auto mblobHolder = mblob->wmap();
T *blob_data = mblobHolder.as<T *>();
cv::Mat resized_image(orig_image);
if (static_cast<int>(width) != orig_image.size().width ||
static_cast<int>(height) != orig_image.size().height) {
cv::resize(orig_image, resized_image, cv::Size(width, height));
}
int batchOffset = batchIndex * width * height * channels;
for (size_t c = 0; c < channels; c++) {
for (size_t h = 0; h < height; h++) {
for (size_t w = 0; w < width; w++) {
blob_data[batchOffset + c * width * height + h * width + w] =
resized_image.at<cv::Vec3f>(h, w)[c];
}
}
}
}
bool Model::load_config(const std::string& cfg_dir) {
YAML::Node config = YAML::LoadFile(cfg_dir);
type = config["_Attributes"]["model_type"].as<std::string>();
name = config["Model"].as<std::string>();
bool to_rgb = true;
if (config["TransformsMode"].IsDefined()) {
std::string mode = config["TransformsMode"].as<std::string>();
if (mode == "BGR") {
to_rgb = false;
} else if (mode != "RGB") {
std::cerr << "[Init] Only 'RGB' or 'BGR' is supported for TransformsMode"
<< std::endl;
return false;
}
}
// 构建数据处理流
transforms_.Init(config["Transforms"], to_rgb);
// 读入label list
labels.clear();
labels = config["_Attributes"]["labels"].as<std::vector<std::string>>();
return true;
}
bool Model::preprocess(cv::Mat* input_im, ImageBlob* blob) {
if (!transforms_.Run(input_im, &inputs_)) {
return false;
}
return true;
}
bool Model::predict(cv::Mat* im, ClsResult* result) {
inputs_.clear();
if (type == "detector") {
std::cerr << "Loading model is a 'detector', DetResult should be passed to "
"function predict()!"
<< std::endl;
return false;
} else if (type == "segmenter") {
std::cerr << "Loading model is a 'segmenter', SegResult should be passed "
"to function predict()!"
<< std::endl;
return false;
}
// 处理输入图像
if (!preprocess(im, &inputs_)) {
std::cerr << "Preprocess failed!" << std::endl;
return false;
}
InferRequest infer_request = executable_network_.CreateInferRequest();
std::string input_name = network_.getInputsInfo().begin()->first;
//im->convertTo(*im, CV_8UC3);
Blob::Ptr input = infer_request.GetBlob(input_name);
matU8ToBlob<float>(*im, input, 0);
infer_request.Infer();
std::string output_name = network_.getOutputsInfo().begin()->first;
Blob::Ptr output = infer_request.GetBlob(output_name);
MemoryBlob::CPtr moutput = as<MemoryBlob>(output);
auto moutputHolder = moutput->rmap();
outputs_ = moutputHolder.as<float *>();
std::cout << sizeof(outputs_) << std::endl;
// 对模型输出结果进行后处理
auto ptr = std::max_element(outputs_, outputs_+sizeof(outputs_));
result->category_id = std::distance(outputs_, ptr);
result->score = *ptr;
result->category = labels[result->category_id];
//for (int i=0;i<sizeof(outputs_);i++){
// std::cout << labels[i] << std::endl;
// std::cout << outputs_[i] << std::endl;
// }
}
} // namespce of PaddleX
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <string>
#include <vector>
#include "include/paddlex/transforms.h"
namespace PaddleX {
std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
{"NEAREST", cv::INTER_NEAREST},
{"AREA", cv::INTER_AREA},
{"CUBIC", cv::INTER_CUBIC},
{"LANCZOS4", cv::INTER_LANCZOS4}};
bool Normalize::Run(cv::Mat* im, ImageBlob* data) {
for (int h = 0; h < im->rows; h++) {
for (int w = 0; w < im->cols; w++) {
im->at<cv::Vec3f>(h, w)[0] =
(im->at<cv::Vec3f>(h, w)[0] / 255.0 - mean_[0]) / std_[0];
im->at<cv::Vec3f>(h, w)[1] =
(im->at<cv::Vec3f>(h, w)[1] / 255.0 - mean_[1]) / std_[1];
im->at<cv::Vec3f>(h, w)[2] =
(im->at<cv::Vec3f>(h, w)[2] / 255.0 - mean_[2]) / std_[2];
}
}
return true;
}
float ResizeByShort::GenerateScale(const cv::Mat& im) {
int origin_w = im.cols;
int origin_h = im.rows;
int im_size_max = std::max(origin_w, origin_h);
int im_size_min = std::min(origin_w, origin_h);
float scale =
static_cast<float>(short_size_) / static_cast<float>(im_size_min);
if (max_size_ > 0) {
if (round(scale * im_size_max) > max_size_) {
scale = static_cast<float>(max_size_) / static_cast<float>(im_size_max);
}
}
return scale;
}
bool ResizeByShort::Run(cv::Mat* im, ImageBlob* data) {
data->im_size_before_resize_.push_back({im->rows, im->cols});
data->reshape_order_.push_back("resize");
float scale = GenerateScale(*im);
int width = static_cast<int>(scale * im->cols);
int height = static_cast<int>(scale * im->rows);
cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
data->scale = scale;
return true;
}
bool CenterCrop::Run(cv::Mat* im, ImageBlob* data) {
int height = static_cast<int>(im->rows);
int width = static_cast<int>(im->cols);
if (height < height_ || width < width_) {
std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
return false;
}
int offset_x = static_cast<int>((width - width_) / 2);
int offset_y = static_cast<int>((height - height_) / 2);
cv::Rect crop_roi(offset_x, offset_y, width_, height_);
*im = (*im)(crop_roi);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
return true;
}
bool Padding::Run(cv::Mat* im, ImageBlob* data) {
data->im_size_before_resize_.push_back({im->rows, im->cols});
data->reshape_order_.push_back("padding");
int padding_w = 0;
int padding_h = 0;
if (width_ > 1 & height_ > 1) {
padding_w = width_ - im->cols;
padding_h = height_ - im->rows;
} else if (coarsest_stride_ > 1) {
padding_h =
ceil(im->rows * 1.0 / coarsest_stride_) * coarsest_stride_ - im->rows;
padding_w =
ceil(im->cols * 1.0 / coarsest_stride_) * coarsest_stride_ - im->cols;
}
if (padding_h < 0 || padding_w < 0) {
std::cerr << "[Padding] Computed padding_h=" << padding_h
<< ", padding_w=" << padding_w
<< ", but they should be greater than 0." << std::endl;
return false;
}
cv::copyMakeBorder(
*im, *im, 0, padding_h, 0, padding_w, cv::BORDER_CONSTANT, cv::Scalar(0));
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
return true;
}
bool ResizeByLong::Run(cv::Mat* im, ImageBlob* data) {
if (long_size_ <= 0) {
std::cerr << "[ResizeByLong] long_size should be greater than 0"
<< std::endl;
return false;
}
data->im_size_before_resize_.push_back({im->rows, im->cols});
data->reshape_order_.push_back("resize");
int origin_w = im->cols;
int origin_h = im->rows;
int im_size_max = std::max(origin_w, origin_h);
float scale =
static_cast<float>(long_size_) / static_cast<float>(im_size_max);
cv::resize(*im, *im, cv::Size(), scale, scale, cv::INTER_NEAREST);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
data->scale = scale;
return true;
}
bool Resize::Run(cv::Mat* im, ImageBlob* data) {
if (width_ <= 0 || height_ <= 0) {
std::cerr << "[Resize] width and height should be greater than 0"
<< std::endl;
return false;
}
if (interpolations.count(interp_) <= 0) {
std::cerr << "[Resize] Invalid interpolation method: '" << interp_ << "'"
<< std::endl;
return false;
}
data->im_size_before_resize_.push_back({im->rows, im->cols});
data->reshape_order_.push_back("resize");
cv::resize(
*im, *im, cv::Size(width_, height_), 0, 0, interpolations[interp_]);
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
return true;
}
void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) {
transforms_.clear();
to_rgb_ = to_rgb;
for (const auto& item : transforms_node) {
std::string name = item.begin()->first.as<std::string>();
std::cout << "trans name: " << name << std::endl;
std::shared_ptr<Transform> transform = CreateTransform(name);
transform->Init(item.begin()->second);
transforms_.push_back(transform);
}
}
std::shared_ptr<Transform> Transforms::CreateTransform(
const std::string& transform_name) {
if (transform_name == "Normalize") {
return std::make_shared<Normalize>();
} else if (transform_name == "ResizeByShort") {
return std::make_shared<ResizeByShort>();
} else if (transform_name == "CenterCrop") {
return std::make_shared<CenterCrop>();
} else if (transform_name == "Resize") {
return std::make_shared<Resize>();
} else if (transform_name == "Padding") {
return std::make_shared<Padding>();
} else if (transform_name == "ResizeByLong") {
return std::make_shared<ResizeByLong>();
} else {
std::cerr << "There's unexpected transform(name='" << transform_name
<< "')." << std::endl;
exit(-1);
}
}
bool Transforms::Run(cv::Mat* im, ImageBlob* data) {
// 按照transforms中预处理算子顺序处理图像
if (to_rgb_) {
cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
}
(*im).convertTo(*im, CV_32FC3);
data->ori_im_size_[0] = im->rows;
data->ori_im_size_[1] = im->cols;
data->new_im_size_[0] = im->rows;
data->new_im_size_[1] = im->cols;
for (int i = 0; i < transforms_.size(); ++i) {
if (!transforms_[i]->Run(im, data)) {
std::cerr << "Apply transforms to image failed!" << std::endl;
return false;
}
}
// 将图像由NHWC转为NCHW格式
// 同时转为连续的内存块存储到ImageBlob
int h = im->rows;
int w = im->cols;
int c = im->channels();
(data->im_data_).resize(c * h * w);
float* ptr = (data->im_data_).data();
for (int i = 0; i < c; ++i) {
cv::extractChannel(*im, cv::Mat(h, w, CV_32FC1, ptr + i * h * w), i);
}
return true;
}
} // namespace PaddleX
...@@ -182,7 +182,7 @@ paddlex.det.FasterRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspec ...@@ -182,7 +182,7 @@ paddlex.det.FasterRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspec
**参数:** **参数:**
> - **num_classes** (int): 包含了背景类的类别数。默认为81。 > - **num_classes** (int): 包含了背景类的类别数。默认为81。
> - **backbone** (str): FasterRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50vd', 'ResNet101', 'ResNet101vd']。默认为'ResNet50'。 > - **backbone** (str): FasterRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd']。默认为'ResNet50'。
> - **with_fpn** (bool): 是否使用FPN结构。默认为True。 > - **with_fpn** (bool): 是否使用FPN结构。默认为True。
> - **aspect_ratios** (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。 > - **aspect_ratios** (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
> - **anchor_sizes** (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。 > - **anchor_sizes** (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
...@@ -262,7 +262,7 @@ paddlex.det.MaskRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_ ...@@ -262,7 +262,7 @@ paddlex.det.MaskRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_
**参数:** **参数:**
> - **num_classes** (int): 包含了背景类的类别数。默认为81。 > - **num_classes** (int): 包含了背景类的类别数。默认为81。
> - **backbone** (str): MaskRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50vd', 'ResNet101', 'ResNet101vd']。默认为'ResNet50'。 > - **backbone** (str): MaskRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd']。默认为'ResNet50'。
> - **with_fpn** (bool): 是否使用FPN结构。默认为True。 > - **with_fpn** (bool): 是否使用FPN结构。默认为True。
> - **aspect_ratios** (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。 > - **aspect_ratios** (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
> - **anchor_sizes** (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。 > - **anchor_sizes** (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。
......
...@@ -22,7 +22,7 @@ PaddleX是基于飞桨技术生态的深度学习全流程开发工具。具备 ...@@ -22,7 +22,7 @@ PaddleX是基于飞桨技术生态的深度学习全流程开发工具。具备
client_use.md client_use.md
FAQ.md FAQ.md
* PaddleX版本: v0.1.6 * PaddleX版本: v0.1.7
* 项目官网: http://www.paddlepaddle.org.cn/paddle/paddlex * 项目官网: http://www.paddlepaddle.org.cn/paddle/paddlex
* 项目GitHub: https://github.com/PaddlePaddle/PaddleX/tree/develop * 项目GitHub: https://github.com/PaddlePaddle/PaddleX/tree/develop
* 官方QQ用户群: 1045148026 * 官方QQ用户群: 1045148026
......
...@@ -13,27 +13,39 @@ ...@@ -13,27 +13,39 @@
# limitations under the License. # limitations under the License.
from __future__ import absolute_import from __future__ import absolute_import
import os
if 'FLAGS_eager_delete_tensor_gb' not in os.environ:
os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
if 'FLAGS_allocator_strategy' not in os.environ:
os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
if "CUDA_VISIBLE_DEVICES" in os.environ:
if os.environ["CUDA_VISIBLE_DEVICES"].count("-1") > 0:
os.environ["CUDA_VISIBLE_DEVICES"] = ""
from .utils.utils import get_environ_info from .utils.utils import get_environ_info
from . import cv from . import cv
from . import det from . import det
from . import seg from . import seg
from . import cls from . import cls
from . import slim from . import slim
from . import convertor
try: try:
import pycocotools import pycocotools
except: except:
print("[WARNING] pycocotools is not installed, detection model is not available now.") print(
print("[WARNING] pycocotools install: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/install.md") "[WARNING] pycocotools is not installed, detection model is not available now."
)
import paddlehub as hub print(
if hub.version.hub_version < '1.6.2': "[WARNING] pycocotools install: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/install.md"
raise Exception("[ERROR] paddlehub >= 1.6.2 is required") )
#import paddlehub as hub
#if hub.version.hub_version < '1.6.2':
# raise Exception("[ERROR] paddlehub >= 1.6.2 is required")
env_info = get_environ_info() env_info = get_environ_info()
load_model = cv.models.load_model load_model = cv.models.load_model
datasets = cv.datasets datasets = cv.datasets
log_level = 2 log_level = 2
__version__ = '0.1.6.github' __version__ = '0.1.7.github'
...@@ -69,26 +69,25 @@ def main(): ...@@ -69,26 +69,25 @@ def main():
if args.fixed_input_shape is not None: if args.fixed_input_shape is not None:
fixed_input_shape = eval(args.fixed_input_shape) fixed_input_shape = eval(args.fixed_input_shape)
assert len( assert len(
fixed_input_shape) == 2, "len of fixed input shape must == 2" fixed_input_shape
) == 2, "len of fixed input shape must == 2, such as [224,224]"
model = pdx.load_model(args.model_dir, fixed_input_shape) model = pdx.load_model(args.model_dir, fixed_input_shape)
model.export_inference_model(args.save_dir) model.export_inference_model(args.save_dir)
if args.export_onnx: if args.export_onnx:
assert args.model_dir is not None, "--model_dir should be defined while exporting onnx model" assert args.model_dir is not None, "--model_dir should be defined while exporting onnx model"
assert args.save_dir is not None, "--save_dir should be defined to save onnx model" assert args.save_dir is not None, "--save_dir should be defined to create onnx model"
assert args.fixed_input_shape is not None, "--fixed_input_shape should be defined [w,h] to create onnx model, such as [224,224]"
fixed_input_shape = None fixed_input_shape = []
if args.fixed_input_shape is not None: if args.fixed_input_shape is not None:
fixed_input_shape = eval(args.fixed_input_shape) fixed_input_shape = eval(args.fixed_input_shape)
assert len( assert len(
fixed_input_shape) == 2, "len of fixed input shape must == 2" fixed_input_shape
) == 2, "len of fixed input shape must == 2, such as [224,224]"
model = pdx.load_model(args.model_dir, fixed_input_shape) model = pdx.load_model(args.model_dir, fixed_input_shape)
pdx.convertor.export_onnx_model(model, args.save_dir)
model_name = os.path.basename(args.model_dir.strip('/')).split('/')[-1]
onnx_name = model_name + '.onnx'
model.export_onnx_model(args.save_dir, onnx_name=onnx_name)
if __name__ == "__main__": if __name__ == "__main__":
......
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
import paddle.fluid as fluid
import os
import sys
import paddlex as pdx
__all__ = ['export_onnx']
def export_onnx(model_dir, save_dir, fixed_input_shape):
assert len(fixed_input_shape) == 2, "len of fixed input shape must == 2"
model = pdx.load_model(model_dir, fixed_input_shape)
model_name = os.path.basename(model_dir.strip('/')).split('/')[-1]
export_onnx_model(model, save_dir)
def export_onnx_model(model, save_dir):
support_list = [
'ResNet18', 'ResNet34', 'ResNet50', 'ResNet101', 'ResNet50_vd',
'ResNet101_vd', 'ResNet50_vd_ssld', 'ResNet101_vd_ssld', 'DarkNet53',
'MobileNetV1', 'MobileNetV2', 'DenseNet121', 'DenseNet161',
'DenseNet201'
]
if model.__class__.__name__ not in support_list:
raise Exception("Model: {} unsupport export to ONNX".format(
model.__class__.__name__))
try:
from fluid.utils import op_io_info, init_name_prefix
from onnx import helper, checker
import fluid_onnx.ops as ops
from fluid_onnx.variables import paddle_variable_to_onnx_tensor, paddle_onnx_weight
from debug.model_check import debug_model, Tracker
except Exception as e:
print(e)
print(
"Import Module Failed! Please install paddle2onnx. Related requirements \
see https://github.com/PaddlePaddle/paddle2onnx.")
sys.exit(-1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
inference_scope = fluid.global_scope()
with fluid.scope_guard(inference_scope):
test_input_names = [
var.name for var in list(model.test_inputs.values())
]
inputs_outputs_list = ["fetch", "feed"]
weights, weights_value_info = [], []
global_block = model.test_prog.global_block()
for var_name in global_block.vars:
var = global_block.var(var_name)
if var_name not in test_input_names\
and var.persistable:
weight, val_info = paddle_onnx_weight(
var=var, scope=inference_scope)
weights.append(weight)
weights_value_info.append(val_info)
# Create inputs
inputs = [
paddle_variable_to_onnx_tensor(v, global_block)
for v in test_input_names
]
print("load the model parameter done.")
onnx_nodes = []
op_check_list = []
op_trackers = []
nms_first_index = -1
nms_outputs = []
for block in model.test_prog.blocks:
for op in block.ops:
if op.type in ops.node_maker:
# TODO: deal with the corner case that vars in
# different blocks have the same name
node_proto = ops.node_maker[str(op.type)](
operator=op, block=block)
op_outputs = []
last_node = None
if isinstance(node_proto, tuple):
onnx_nodes.extend(list(node_proto))
last_node = list(node_proto)
else:
onnx_nodes.append(node_proto)
last_node = [node_proto]
tracker = Tracker(str(op.type), last_node)
op_trackers.append(tracker)
op_check_list.append(str(op.type))
if op.type == "multiclass_nms" and nms_first_index < 0:
nms_first_index = 0
if nms_first_index >= 0:
_, _, output_op = op_io_info(op)
for output in output_op:
nms_outputs.extend(output_op[output])
else:
if op.type not in ['feed', 'fetch']:
op_check_list.append(op.type)
print('The operator sets to run test case.')
print(set(op_check_list))
# Create outputs
# Get the new names for outputs if they've been renamed in nodes' making
renamed_outputs = op_io_info.get_all_renamed_outputs()
test_outputs = list(model.test_outputs.values())
test_outputs_names = [var.name for var in model.test_outputs.values()]
test_outputs_names = [
name if name not in renamed_outputs else renamed_outputs[name]
for name in test_outputs_names
]
outputs = [
paddle_variable_to_onnx_tensor(v, global_block)
for v in test_outputs_names
]
# Make graph
onnx_name = 'paddlex.onnx'
onnx_graph = helper.make_graph(
nodes=onnx_nodes,
name=onnx_name,
initializer=weights,
inputs=inputs + weights_value_info,
outputs=outputs)
# Make model
onnx_model = helper.make_model(
onnx_graph, producer_name='PaddlePaddle')
# Model check
checker.check_model(onnx_model)
if onnx_model is not None:
onnx_model_file = os.path.join(save_dir, onnx_name)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
with open(onnx_model_file, 'wb') as f:
f.write(onnx_model.SerializeToString())
print("Saved converted model to path: %s" % onnx_model_file)
...@@ -254,3 +254,11 @@ class Dataset: ...@@ -254,3 +254,11 @@ class Dataset:
buffer_size=self.buffer_size, buffer_size=self.buffer_size,
batch_size=batch_size, batch_size=batch_size,
drop_last=drop_last) drop_last=drop_last)
def set_num_samples(self, num_samples):
if num_samples > len(self.file_list):
logging.warning(
"You want set num_samples to {}, but your dataset only has {} samples, so we will keep your dataset num_samples as {}"
.format(num_samples, len(self.file_list), len(self.file_list)))
num_samples = len(self.file_list)
self.num_samples = num_samples
...@@ -200,18 +200,31 @@ class BaseAPI: ...@@ -200,18 +200,31 @@ class BaseAPI:
self.exe.run(startup_prog) self.exe.run(startup_prog)
if pretrain_weights is not None: if pretrain_weights is not None:
logging.info( logging.info(
"Load pretrain weights from {}.".format(pretrain_weights)) "Load pretrain weights from {}.".format(pretrain_weights),
use_color=True)
paddlex.utils.utils.load_pretrain_weights( paddlex.utils.utils.load_pretrain_weights(
self.exe, self.train_prog, pretrain_weights, fuse_bn) self.exe, self.train_prog, pretrain_weights, fuse_bn)
# 进行裁剪 # 进行裁剪
if sensitivities_file is not None: if sensitivities_file is not None:
import paddleslim
from .slim.prune_config import get_sensitivities from .slim.prune_config import get_sensitivities
sensitivities_file = get_sensitivities(sensitivities_file, self, sensitivities_file = get_sensitivities(sensitivities_file, self,
save_dir) save_dir)
from .slim.prune import get_params_ratios, prune_program from .slim.prune import get_params_ratios, prune_program
logging.info(
"Start to prune program with eval_metric_loss = {}".format(
eval_metric_loss),
use_color=True)
origin_flops = paddleslim.analysis.flops(self.test_prog)
prune_params_ratios = get_params_ratios( prune_params_ratios = get_params_ratios(
sensitivities_file, eval_metric_loss=eval_metric_loss) sensitivities_file, eval_metric_loss=eval_metric_loss)
prune_program(self, prune_params_ratios) prune_program(self, prune_params_ratios)
current_flops = paddleslim.analysis.flops(self.test_prog)
remaining_ratio = current_flops / origin_flops
logging.info(
"Finish prune program, before FLOPs:{}, after prune FLOPs:{}, remaining ratio:{}"
.format(origin_flops, current_flops, remaining_ratio),
use_color=True)
self.status = 'Prune' self.status = 'Prune'
def get_model_info(self): def get_model_info(self):
...@@ -223,6 +236,9 @@ class BaseAPI: ...@@ -223,6 +236,9 @@ class BaseAPI:
del self.init_params['self'] del self.init_params['self']
if '__class__' in self.init_params: if '__class__' in self.init_params:
del self.init_params['__class__'] del self.init_params['__class__']
if 'model_name' in self.init_params:
del self.init_params['model_name']
info['_init_params'] = self.init_params info['_init_params'] = self.init_params
info['_Attributes']['num_classes'] = self.num_classes info['_Attributes']['num_classes'] = self.num_classes
...@@ -256,7 +272,10 @@ class BaseAPI: ...@@ -256,7 +272,10 @@ class BaseAPI:
if osp.exists(save_dir): if osp.exists(save_dir):
os.remove(save_dir) os.remove(save_dir)
os.makedirs(save_dir) os.makedirs(save_dir)
fluid.save(self.train_prog, osp.join(save_dir, 'model')) if self.train_prog is not None:
fluid.save(self.train_prog, osp.join(save_dir, 'model'))
else:
fluid.save(self.test_prog, osp.join(save_dir, 'model'))
model_info = self.get_model_info() model_info = self.get_model_info()
model_info['status'] = self.status model_info['status'] = self.status
with open( with open(
...@@ -328,140 +347,6 @@ class BaseAPI: ...@@ -328,140 +347,6 @@ class BaseAPI:
logging.info( logging.info(
"Model for inference deploy saved in {}.".format(save_dir)) "Model for inference deploy saved in {}.".format(save_dir))
def export_onnx_model(self, save_dir, onnx_name=None):
support_list = ['ResNet18','ResNet34','ResNet50','ResNet101','ResNet50_vd',
'ResNet101_vd','ResNet50_vd_ssld','ResNet101_vd_ssld','DarkNet53',
'MobileNetV1','MobileNetV2','MobileNetV3_large','MobileNetV3_small',
'MobileNetV3_large_ssld','MobileNetV3_small_ssld','Xception41',
'Xception65','DenseNet121','DenseNet161','DenseNet201','ShuffleNetV2']
unsupport_list = []
if self.model_type in unsupport_list:
raise Exception("Model: {} unsupport export to ONNX"
.format(self.model_type)
try:
from fluid.utils import op_io_info, init_name_prefix
from onnx import helper, checker
import fluid_onnx.ops as ops
from fluid_onnx.variables import paddle_variable_to_onnx_tensor, paddle_onnx_weight
from debug.model_check import debug_model, Tracker
except Exception as e:
print(e)
print(
"Import Module Failed! Please install paddle2onnx. Related requirements
see https://github.com/PaddlePaddle/paddle2onnx"
)
sys.exit(-1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
inference_scope = fluid.global_scope()
with fluid.scope_guard(inference_scope):
test_input_names = [
var.name for var in list(self.test_inputs.values())
]
inputs_outputs_list = ["fetch", "feed"]
weights, weights_value_info = [], []
global_block = self.test_prog.global_block()
for var_name in global_block.vars:
var = global_block.var(var_name)
if var_name not in test_input_names\
and var.persistable:
weight, val_info = paddle_onnx_weight(
var=var, scope=inference_scope)
weights.append(weight)
weights_value_info.append(val_info)
# Create inputs
inputs = [
paddle_variable_to_onnx_tensor(v, global_block)
for v in test_input_names
]
print("load the model parameter done.")
onnx_nodes = []
op_check_list = []
op_trackers = []
nms_first_index = -1
nms_outputs = []
for block in self.test_prog.blocks:
for op in block.ops:
if op.type in ops.node_maker:
# TODO(kuke): deal with the corner case that vars in
# different blocks have the same name
node_proto = ops.node_maker[str(op.type)](
operator=op, block=block)
op_outputs = []
last_node = None
if isinstance(node_proto, tuple):
onnx_nodes.extend(list(node_proto))
last_node = list(node_proto)
else:
onnx_nodes.append(node_proto)
last_node = [node_proto]
tracker = Tracker(str(op.type), last_node)
op_trackers.append(tracker)
op_check_list.append(str(op.type))
if op.type == "multiclass_nms" and nms_first_index < 0:
nms_first_index = 0
if nms_first_index >= 0:
_, _, output_op = op_io_info(op)
for output in output_op:
nms_outputs.extend(output_op[output])
else:
if op.type not in ['feed', 'fetch']:
op_check_list.append(op.type)
print('The operator sets to run test case.')
print(set(op_check_list))
# Create outputs
# Get the new names for outputs if they've been renamed in nodes' making
renamed_outputs = op_io_info.get_all_renamed_outputs()
test_outputs = list(self.test_outputs.values())
test_outputs_names = [
var.name for var in self.test_outputs.values()
]
test_outputs_names = [
name if name not in renamed_outputs else renamed_outputs[name]
for name in test_outputs_names
]
outputs = [
paddle_variable_to_onnx_tensor(v, global_block)
for v in test_outputs_names
]
# Make graph
onnx_graph = helper.make_graph(
nodes=onnx_nodes,
name=onnx_name,
initializer=weights,
inputs=inputs + weights_value_info,
outputs=outputs)
# Make model
onnx_model = helper.make_model(
onnx_graph, producer_name='PaddlePaddle')
# Model check
checker.check_model(onnx_model)
# Print model
#if to_print_model:
# print("The converted model is:\n{}".format(onnx_model))
# Save converted model
if onnx_model is not None:
try:
onnx_model_file = osp.join(save_dir, onnx_name)
if not os.path.exists(save_dir):
os.mkdir(save_dir)
with open(onnx_model_file, 'wb') as f:
f.write(onnx_model.SerializeToString())
print(
"Saved converted model to path: %s" % onnx_model_file)
except Exception as e:
print(e)
print(
"Convert Failed! Please use the debug message to find error."
)
sys.exit(-1)
def train_loop(self, def train_loop(self,
num_epochs, num_epochs,
train_dataset, train_dataset,
...@@ -539,7 +424,7 @@ class BaseAPI: ...@@ -539,7 +424,7 @@ class BaseAPI:
earlystop = EarlyStop(early_stop_patience, thresh) earlystop = EarlyStop(early_stop_patience, thresh)
best_accuracy_key = "" best_accuracy_key = ""
best_accuracy = -1.0 best_accuracy = -1.0
best_model_epoch = 1 best_model_epoch = -1
for i in range(num_epochs): for i in range(num_epochs):
records = list() records = list()
step_start_time = time.time() step_start_time = time.time()
...@@ -612,7 +497,7 @@ class BaseAPI: ...@@ -612,7 +497,7 @@ class BaseAPI:
current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1)) current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1))
if not osp.isdir(current_save_dir): if not osp.isdir(current_save_dir):
os.makedirs(current_save_dir) os.makedirs(current_save_dir)
if eval_dataset is not None: if eval_dataset is not None and eval_dataset.num_samples > 0:
self.eval_metrics, self.eval_details = self.evaluate( self.eval_metrics, self.eval_details = self.evaluate(
eval_dataset=eval_dataset, eval_dataset=eval_dataset,
batch_size=eval_batch_size, batch_size=eval_batch_size,
...@@ -644,10 +529,11 @@ class BaseAPI: ...@@ -644,10 +529,11 @@ class BaseAPI:
self.save_model(save_dir=current_save_dir) self.save_model(save_dir=current_save_dir)
time_eval_one_epoch = time.time() - eval_epoch_start_time time_eval_one_epoch = time.time() - eval_epoch_start_time
eval_epoch_start_time = time.time() eval_epoch_start_time = time.time()
logging.info( if best_model_epoch > 0:
'Current evaluated best model in eval_dataset is epoch_{}, {}={}' logging.info(
.format(best_model_epoch, best_accuracy_key, 'Current evaluated best model in eval_dataset is epoch_{}, {}={}'
best_accuracy)) .format(best_model_epoch, best_accuracy_key,
best_accuracy))
if eval_dataset is not None and early_stop: if eval_dataset is not None and early_stop:
if earlystop(current_accuracy): if earlystop(current_accuracy):
break break
...@@ -38,12 +38,9 @@ def load_model(model_dir, fixed_input_shape=None): ...@@ -38,12 +38,9 @@ def load_model(model_dir, fixed_input_shape=None):
if not hasattr(paddlex.cv.models, info['Model']): if not hasattr(paddlex.cv.models, info['Model']):
raise Exception("There's no attribute {} in paddlex.cv.models".format( raise Exception("There's no attribute {} in paddlex.cv.models".format(
info['Model'])) info['Model']))
if 'model_name' in info['_init_params']:
if info['_Attributes']['model_type'] == 'classifier': del info['_init_params']['model_name']
model = paddlex.cv.models.BaseClassifier(**info['_init_params']) model = getattr(paddlex.cv.models, info['Model'])(**info['_init_params'])
else:
model = getattr(paddlex.cv.models,
info['Model'])(**info['_init_params'])
model.fixed_input_shape = fixed_input_shape model.fixed_input_shape = fixed_input_shape
if status == "Normal" or \ if status == "Normal" or \
status == "Prune" or status == "fluid.save": status == "Prune" or status == "fluid.save":
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
import numpy as np import numpy as np
import os.path as osp import os.path as osp
import paddle.fluid as fluid import paddle.fluid as fluid
import paddlehub as hub #import paddlehub as hub
import paddlex import paddlex
sensitivities_data = { sensitivities_data = {
...@@ -105,22 +105,26 @@ def get_sensitivities(flag, model, save_dir): ...@@ -105,22 +105,26 @@ def get_sensitivities(flag, model, save_dir):
model_type) model_type)
url = sensitivities_data[model_type] url = sensitivities_data[model_type]
fname = osp.split(url)[-1] fname = osp.split(url)[-1]
try: paddlex.utils.download(url, path=save_dir)
hub.download(fname, save_path=save_dir)
except Exception as e:
if isinstance(e, hub.ResourceNotFoundError):
raise Exception(
"Resource for model {}(key='{}') not found".format(
model_type, fname))
elif isinstance(e, hub.ServerConnectionError):
raise Exception(
"Cannot get reource for model {}(key='{}'), please check your internet connecgtion"
.format(model_type, fname))
else:
raise Exception(
"Unexpected error, please make sure paddlehub >= 1.6.2 {}".
format(str(e)))
return osp.join(save_dir, fname) return osp.join(save_dir, fname)
# try:
# hub.download(fname, save_path=save_dir)
# except Exception as e:
# if isinstance(e, hub.ResourceNotFoundError):
# raise Exception(
# "Resource for model {}(key='{}') not found".format(
# model_type, fname))
# elif isinstance(e, hub.ServerConnectionError):
# raise Exception(
# "Cannot get reource for model {}(key='{}'), please check your internet connecgtion"
# .format(model_type, fname))
# else:
# raise Exception(
# "Unexpected error, please make sure paddlehub >= 1.6.2 {}".
# format(str(e)))
# return osp.join(save_dir, fname)
else: else:
raise Exception( raise Exception(
"sensitivities need to be defined as directory path or `DEFAULT`(download sensitivities automatically)." "sensitivities need to be defined as directory path or `DEFAULT`(download sensitivities automatically)."
......
import paddlex import paddlex
import paddlehub as hub #import paddlehub as hub
import os import os
import os.path as osp import os.path as osp
...@@ -85,40 +85,53 @@ def get_pretrain_weights(flag, model_type, backbone, save_dir): ...@@ -85,40 +85,53 @@ def get_pretrain_weights(flag, model_type, backbone, save_dir):
backbone = 'DetResNet50' backbone = 'DetResNet50'
assert backbone in image_pretrain, "There is not ImageNet pretrain weights for {}, you may try COCO.".format( assert backbone in image_pretrain, "There is not ImageNet pretrain weights for {}, you may try COCO.".format(
backbone) backbone)
try: url = image_pretrain[backbone]
hub.download(backbone, save_path=new_save_dir) fname = osp.split(url)[-1].split('.')[0]
except Exception as e: paddlex.utils.download_and_decompress(url, path=new_save_dir)
if isinstance(e, hub.ResourceNotFoundError): return osp.join(new_save_dir, fname)
raise Exception( # try:
"Resource for backbone {} not found".format(backbone)) # hub.download(backbone, save_path=new_save_dir)
elif isinstance(e, hub.ServerConnectionError): # except Exception as e:
raise Exception( # if isinstance(e, hub.ResourceNotFoundError):
"Cannot get reource for backbone {}, please check your internet connecgtion" # raise Exception(
.format(backbone)) # "Resource for backbone {} not found".format(backbone))
else: # elif isinstance(e, hub.ServerConnectionError):
raise Exception( # raise Exception(
"Unexpected error, please make sure paddlehub >= 1.6.2") # "Cannot get reource for backbone {}, please check your internet connecgtion"
return osp.join(new_save_dir, backbone) # .format(backbone))
# else:
# raise Exception(
# "Unexpected error, please make sure paddlehub >= 1.6.2")
# return osp.join(new_save_dir, backbone)
elif flag == 'COCO': elif flag == 'COCO':
new_save_dir = save_dir new_save_dir = save_dir
if hasattr(paddlex, 'pretrain_dir'): if hasattr(paddlex, 'pretrain_dir'):
new_save_dir = paddlex.pretrain_dir new_save_dir = paddlex.pretrain_dir
assert backbone in coco_pretrain, "There is not COCO pretrain weights for {}, you may try ImageNet.".format( url = coco_pretrain[backbone]
backbone) fname = osp.split(url)[-1].split('.')[0]
try: paddlex.utils.download_and_decompress(url, path=new_save_dir)
hub.download(backbone, save_path=new_save_dir) return osp.join(new_save_dir, fname)
except Exception as e:
if isinstance(hub.ResourceNotFoundError):
raise Exception( # new_save_dir = save_dir
"Resource for backbone {} not found".format(backbone)) # if hasattr(paddlex, 'pretrain_dir'):
elif isinstance(hub.ServerConnectionError): # new_save_dir = paddlex.pretrain_dir
raise Exception( # assert backbone in coco_pretrain, "There is not COCO pretrain weights for {}, you may try ImageNet.".format(
"Cannot get reource for backbone {}, please check your internet connecgtion" # backbone)
.format(backbone)) # try:
else: # hub.download(backbone, save_path=new_save_dir)
raise Exception( # except Exception as e:
"Unexpected error, please make sure paddlehub >= 1.6.2") # if isinstance(hub.ResourceNotFoundError):
return osp.join(new_save_dir, backbone) # raise Exception(
# "Resource for backbone {} not found".format(backbone))
# elif isinstance(hub.ServerConnectionError):
# raise Exception(
# "Cannot get reource for backbone {}, please check your internet connecgtion"
# .format(backbone))
# else:
# raise Exception(
# "Unexpected error, please make sure paddlehub >= 1.6.2")
# return osp.join(new_save_dir, backbone)
else: else:
raise Exception( raise Exception(
"pretrain_weights need to be defined as directory path or `IMAGENET` or 'COCO' (download pretrain weights automatically)." "pretrain_weights need to be defined as directory path or `IMAGENET` or 'COCO' (download pretrain weights automatically)."
......
...@@ -31,18 +31,7 @@ def seconds_to_hms(seconds): ...@@ -31,18 +31,7 @@ def seconds_to_hms(seconds):
return hms_str return hms_str
def setting_environ_flags():
if 'FLAGS_eager_delete_tensor_gb' not in os.environ:
os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
if 'FLAGS_allocator_strategy' not in os.environ:
os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
if "CUDA_VISIBLE_DEVICES" in os.environ:
if os.environ["CUDA_VISIBLE_DEVICES"].count("-1") > 0:
os.environ["CUDA_VISIBLE_DEVICES"] = ""
def get_environ_info(): def get_environ_info():
setting_environ_flags()
import paddle.fluid as fluid import paddle.fluid as fluid
info = dict() info = dict()
info['place'] = 'cpu' info['place'] = 'cpu'
......
...@@ -19,7 +19,7 @@ long_description = "PaddleX. A end-to-end deeplearning model development toolkit ...@@ -19,7 +19,7 @@ long_description = "PaddleX. A end-to-end deeplearning model development toolkit
setuptools.setup( setuptools.setup(
name="paddlex", name="paddlex",
version='0.1.6', version='0.1.7',
author="paddlex", author="paddlex",
author_email="paddlex@baidu.com", author_email="paddlex@baidu.com",
description=long_description, description=long_description,
...@@ -29,9 +29,8 @@ setuptools.setup( ...@@ -29,9 +29,8 @@ setuptools.setup(
packages=setuptools.find_packages(), packages=setuptools.find_packages(),
setup_requires=['cython', 'numpy', 'sklearn'], setup_requires=['cython', 'numpy', 'sklearn'],
install_requires=[ install_requires=[
"pycocotools;platform_system!='Windows'", "pycocotools;platform_system!='Windows'", 'pyyaml', 'colorama', 'tqdm',
'pyyaml', 'colorama', 'tqdm', 'visualdl==1.3.0', 'visualdl==1.3.0', 'paddleslim==1.0.1'
'paddleslim==1.0.1', 'paddlehub>=1.6.2'
], ],
classifiers=[ classifiers=[
"Programming Language :: Python :: 3", "Programming Language :: Python :: 3",
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册