Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
398b7e46
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
398b7e46
编写于
7月 13, 2020
作者:
J
jack
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove time record
上级
62daf2fb
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
0 addition
and
80 deletion
+0
-80
deploy/cpp/demo/classifier.cpp
deploy/cpp/demo/classifier.cpp
+0
-26
deploy/cpp/demo/detector.cpp
deploy/cpp/demo/detector.cpp
+0
-27
deploy/cpp/demo/segmenter.cpp
deploy/cpp/demo/segmenter.cpp
+0
-27
未找到文件。
deploy/cpp/demo/classifier.cpp
浏览文件 @
398b7e46
...
...
@@ -62,8 +62,6 @@ int main(int argc, char** argv) {
FLAGS_use_ir_optim
);
// 进行预测
double
total_running_time_s
=
0.0
;
double
total_imread_time_s
=
0.0
;
int
imgs
=
1
;
if
(
FLAGS_image_list
!=
""
)
{
std
::
ifstream
inf
(
FLAGS_image_list
);
...
...
@@ -79,7 +77,6 @@ int main(int argc, char** argv) {
}
imgs
=
image_paths
.
size
();
for
(
int
i
=
0
;
i
<
image_paths
.
size
();
i
+=
FLAGS_batch_size
)
{
auto
start
=
system_clock
::
now
();
// 读图像
int
im_vec_size
=
std
::
min
(
static_cast
<
int
>
(
image_paths
.
size
()),
i
+
FLAGS_batch_size
);
...
...
@@ -91,19 +88,7 @@ int main(int argc, char** argv) {
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
im_vec
[
j
-
i
]
=
std
::
move
(
cv
::
imread
(
image_paths
[
j
],
1
));
}
auto
imread_end
=
system_clock
::
now
();
model
.
predict
(
im_vec
,
&
results
,
thread_num
);
auto
imread_duration
=
duration_cast
<
microseconds
>
(
imread_end
-
start
);
total_imread_time_s
+=
static_cast
<
double
>
(
imread_duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
auto
end
=
system_clock
::
now
();
auto
duration
=
duration_cast
<
microseconds
>
(
end
-
start
);
total_running_time_s
+=
static_cast
<
double
>
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
std
::
cout
<<
"Path:"
<<
image_paths
[
j
]
<<
", predict label: "
<<
results
[
j
-
i
].
category
...
...
@@ -112,23 +97,12 @@ int main(int argc, char** argv) {
}
}
}
else
{
auto
start
=
system_clock
::
now
();
PaddleX
::
ClsResult
result
;
cv
::
Mat
im
=
cv
::
imread
(
FLAGS_image
,
1
);
model
.
predict
(
im
,
&
result
);
auto
end
=
system_clock
::
now
();
auto
duration
=
duration_cast
<
microseconds
>
(
end
-
start
);
total_running_time_s
+=
static_cast
<
double
>
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
std
::
cout
<<
"Predict label: "
<<
result
.
category
<<
", label_id:"
<<
result
.
category_id
<<
", score: "
<<
result
.
score
<<
std
::
endl
;
}
std
::
cout
<<
"Total running time: "
<<
total_running_time_s
<<
" s, average running time: "
<<
total_running_time_s
/
imgs
<<
" s/img, total read img time: "
<<
total_imread_time_s
<<
" s, average read time: "
<<
total_imread_time_s
/
imgs
<<
" s/img, batch_size = "
<<
FLAGS_batch_size
<<
std
::
endl
;
return
0
;
}
deploy/cpp/demo/detector.cpp
浏览文件 @
398b7e46
...
...
@@ -65,11 +65,7 @@ int main(int argc, char** argv) {
FLAGS_gpu_id
,
FLAGS_key
,
FLAGS_use_ir_optim
);
double
total_running_time_s
=
0.0
;
double
total_imread_time_s
=
0.0
;
int
imgs
=
1
;
auto
colormap
=
PaddleX
::
GenerateColorMap
(
model
.
labels
.
size
());
std
::
string
save_dir
=
"output"
;
// 进行预测
if
(
FLAGS_image_list
!=
""
)
{
...
...
@@ -85,7 +81,6 @@ int main(int argc, char** argv) {
}
imgs
=
image_paths
.
size
();
for
(
int
i
=
0
;
i
<
image_paths
.
size
();
i
+=
FLAGS_batch_size
)
{
auto
start
=
system_clock
::
now
();
int
im_vec_size
=
std
::
min
(
static_cast
<
int
>
(
image_paths
.
size
()),
i
+
FLAGS_batch_size
);
std
::
vector
<
cv
::
Mat
>
im_vec
(
im_vec_size
-
i
);
...
...
@@ -96,17 +91,7 @@ int main(int argc, char** argv) {
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
im_vec
[
j
-
i
]
=
std
::
move
(
cv
::
imread
(
image_paths
[
j
],
1
));
}
auto
imread_end
=
system_clock
::
now
();
model
.
predict
(
im_vec
,
&
results
,
thread_num
);
auto
imread_duration
=
duration_cast
<
microseconds
>
(
imread_end
-
start
);
total_imread_time_s
+=
static_cast
<
double
>
(
imread_duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
auto
end
=
system_clock
::
now
();
auto
duration
=
duration_cast
<
microseconds
>
(
end
-
start
);
total_running_time_s
+=
static_cast
<
double
>
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
// 输出结果目标框
for
(
int
j
=
0
;
j
<
im_vec_size
-
i
;
++
j
)
{
for
(
int
k
=
0
;
k
<
results
[
j
].
boxes
.
size
();
++
k
)
{
...
...
@@ -132,15 +117,9 @@ int main(int argc, char** argv) {
}
}
}
else
{
auto
start
=
system_clock
::
now
();
PaddleX
::
DetResult
result
;
cv
::
Mat
im
=
cv
::
imread
(
FLAGS_image
,
1
);
model
.
predict
(
im
,
&
result
);
auto
end
=
system_clock
::
now
();
auto
duration
=
duration_cast
<
microseconds
>
(
end
-
start
);
total_running_time_s
+=
static_cast
<
double
>
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
// 输出结果目标框
for
(
int
i
=
0
;
i
<
result
.
boxes
.
size
();
++
i
)
{
std
::
cout
<<
"image file: "
<<
FLAGS_image
<<
std
::
endl
;
...
...
@@ -163,11 +142,5 @@ int main(int argc, char** argv) {
std
::
cout
<<
"Visualized output saved as "
<<
save_path
<<
std
::
endl
;
}
std
::
cout
<<
"Total running time: "
<<
total_running_time_s
<<
" s, average running time: "
<<
total_running_time_s
/
imgs
<<
" s/img, total read img time: "
<<
total_imread_time_s
<<
" s, average read img time: "
<<
total_imread_time_s
/
imgs
<<
" s, batch_size = "
<<
FLAGS_batch_size
<<
std
::
endl
;
return
0
;
}
deploy/cpp/demo/segmenter.cpp
浏览文件 @
398b7e46
...
...
@@ -62,11 +62,7 @@ int main(int argc, char** argv) {
FLAGS_gpu_id
,
FLAGS_key
,
FLAGS_use_ir_optim
);
double
total_running_time_s
=
0.0
;
double
total_imread_time_s
=
0.0
;
int
imgs
=
1
;
auto
colormap
=
PaddleX
::
GenerateColorMap
(
model
.
labels
.
size
());
// 进行预测
if
(
FLAGS_image_list
!=
""
)
{
std
::
ifstream
inf
(
FLAGS_image_list
);
...
...
@@ -81,7 +77,6 @@ int main(int argc, char** argv) {
}
imgs
=
image_paths
.
size
();
for
(
int
i
=
0
;
i
<
image_paths
.
size
();
i
+=
FLAGS_batch_size
)
{
auto
start
=
system_clock
::
now
();
int
im_vec_size
=
std
::
min
(
static_cast
<
int
>
(
image_paths
.
size
()),
i
+
FLAGS_batch_size
);
std
::
vector
<
cv
::
Mat
>
im_vec
(
im_vec_size
-
i
);
...
...
@@ -92,17 +87,7 @@ int main(int argc, char** argv) {
for
(
int
j
=
i
;
j
<
im_vec_size
;
++
j
)
{
im_vec
[
j
-
i
]
=
std
::
move
(
cv
::
imread
(
image_paths
[
j
],
1
));
}
auto
imread_end
=
system_clock
::
now
();
model
.
predict
(
im_vec
,
&
results
,
thread_num
);
auto
imread_duration
=
duration_cast
<
microseconds
>
(
imread_end
-
start
);
total_imread_time_s
+=
static_cast
<
double
>
(
imread_duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
auto
end
=
system_clock
::
now
();
auto
duration
=
duration_cast
<
microseconds
>
(
end
-
start
);
total_running_time_s
+=
static_cast
<
double
>
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
// 可视化
for
(
int
j
=
0
;
j
<
im_vec_size
-
i
;
++
j
)
{
cv
::
Mat
vis_img
=
...
...
@@ -114,15 +99,9 @@ int main(int argc, char** argv) {
}
}
}
else
{
auto
start
=
system_clock
::
now
();
PaddleX
::
SegResult
result
;
cv
::
Mat
im
=
cv
::
imread
(
FLAGS_image
,
1
);
model
.
predict
(
im
,
&
result
);
auto
end
=
system_clock
::
now
();
auto
duration
=
duration_cast
<
microseconds
>
(
end
-
start
);
total_running_time_s
+=
static_cast
<
double
>
(
duration
.
count
())
*
microseconds
::
period
::
num
/
microseconds
::
period
::
den
;
// 可视化
cv
::
Mat
vis_img
=
PaddleX
::
Visualize
(
im
,
result
,
model
.
labels
);
std
::
string
save_path
=
...
...
@@ -131,11 +110,5 @@ int main(int argc, char** argv) {
result
.
clear
();
std
::
cout
<<
"Visualized output saved as "
<<
save_path
<<
std
::
endl
;
}
std
::
cout
<<
"Total running time: "
<<
total_running_time_s
<<
" s, average running time: "
<<
total_running_time_s
/
imgs
<<
" s/img, total read img time: "
<<
total_imread_time_s
<<
" s, average read img time: "
<<
total_imread_time_s
/
imgs
<<
" s, batch_size = "
<<
FLAGS_batch_size
<<
std
::
endl
;
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录