Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleX
提交
35a1019e
P
PaddleX
项目概览
PaddlePaddle
/
PaddleX
通知
138
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
43
列表
看板
标记
里程碑
合并请求
5
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleX
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
43
Issue
43
列表
看板
标记
里程碑
合并请求
5
合并请求
5
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
35a1019e
编写于
6月 11, 2020
作者:
F
FlyingQianMM
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add fastscnn for segmentation
上级
0e8fd3f5
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
120 addition
and
29 deletion
+120
-29
docs/apis/models/semantic_segmentation.md
docs/apis/models/semantic_segmentation.md
+90
-5
new_tutorials/train/README.md
new_tutorials/train/README.md
+3
-0
paddlex/cv/models/__init__.py
paddlex/cv/models/__init__.py
+1
-0
paddlex/cv/models/deeplabv3p.py
paddlex/cv/models/deeplabv3p.py
+1
-1
paddlex/cv/models/hrnet.py
paddlex/cv/models/hrnet.py
+1
-6
paddlex/cv/models/unet.py
paddlex/cv/models/unet.py
+1
-6
paddlex/cv/models/utils/pretrain_weights.py
paddlex/cv/models/utils/pretrain_weights.py
+15
-4
paddlex/cv/nets/__init__.py
paddlex/cv/nets/__init__.py
+1
-0
paddlex/cv/nets/segmentation/__init__.py
paddlex/cv/nets/segmentation/__init__.py
+1
-0
paddlex/cv/nets/segmentation/deeplabv3p.py
paddlex/cv/nets/segmentation/deeplabv3p.py
+0
-1
paddlex/cv/nets/segmentation/hrnet.py
paddlex/cv/nets/segmentation/hrnet.py
+0
-1
paddlex/cv/nets/segmentation/unet.py
paddlex/cv/nets/segmentation/unet.py
+5
-5
paddlex/seg.py
paddlex/seg.py
+1
-0
未找到文件。
docs/apis/models/semantic_segmentation.md
浏览文件 @
35a1019e
...
...
@@ -40,12 +40,12 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, ev
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认'output'
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重(注意:暂未提供Xception41、MobileNetV2_x0.25、MobileNetV2_x0.5、MobileNetV2_x1.5、MobileNetV2_x2.0的COCO预训练模型);若为字符串'CITYSCAPES',则自动下载在CITYSCAPES数据集上预训练的模型权重(注意:暂未提供Xception41、MobileNetV2_x0.25、MobileNetV2_x0.5、MobileNetV2_x1.5、MobileNetV2_x2.0的CITYSCAPES预训练模型);为None,则不使用预训练模型。默认'IMAGENET'。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',则自动下载在COCO数据集上预训练的模型权重(注意:暂未提供Xception41、MobileNetV2_x0.25、MobileNetV2_x0.5、MobileNetV2_x1.5、MobileNetV2_x2.0的COCO预训练模型);若为字符串'CITYSCAPES',则自动下载在CITYSCAPES数据集上预训练的模型权重(注意:暂未提供Xception41、MobileNetV2_x0.25、MobileNetV2_x0.5、MobileNetV2_x1.5、MobileNetV2_x2.0的CITYSCAPES预训练模型);
若
为None,则不使用预训练模型。默认'IMAGENET'。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在
ImageNet
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在
Cityscapes
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (bool): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
...
...
@@ -129,7 +129,7 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, ev
> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在
ImageNet
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在
Cityscapes
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
...
...
@@ -209,12 +209,12 @@ train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, ev
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认'output'
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet数据集上预训练的模型权重;若为字符串'CITYSCAPES',则自动下载在CITYSCAPES图片数据上预训练的模型权重(注意:目前仅提供`width`取值为18的CITYSCAPES预训练模型);为None,则不使用预训练模型。默认'IMAGENET'。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet数据集上预训练的模型权重;若为字符串'CITYSCAPES',则自动下载在CITYSCAPES图片数据上预训练的模型权重(注意:目前仅提供`width`取值为18的CITYSCAPES预训练模型);
若
为None,则不使用预训练模型。默认'IMAGENET'。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在
ImageNet
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在
Cityscapes
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
...
...
@@ -258,3 +258,88 @@ predict(self, im_file, transforms=None):
> **返回值**
> >
> > - **dict**: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)。
## FastSCNN类
```
python
paddlex
.
seg
.
FastSCNN
(
num_classes
=
2
,
use_bce_loss
=
False
,
use_dice_loss
=
False
,
class_weight
=
None
,
ignore_index
=
255
,
multi_loss_weight
=
[
1.0
])
```
> 构建FastSCNN分割器。
> **参数**
> > - **num_classes** (int): 类别数。
> > - **use_bce_loss** (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。默认False。
> > - **use_dice_loss** (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。默认False。
> > - **class_weight** (list/str): 交叉熵损失函数各类损失的权重。当`class_weight`为list的时候,长度应为`num_classes`。当`class_weight`为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,即平时使用的交叉熵损失函数。
> > - **ignore_index** (int): label上忽略的值,label为`ignore_index`的像素不参与损失函数的计算。默认255。
> > - **multi_loss_weight** (list): 多分支上的loss权重。默认计算一个分支上的loss,即默认值为[1.0]。也支持计算两个分支或三个分支上的loss,权重按[fusion_branch_weight, higher_branch_weight, lower_branch_weight]排列,fusion_branch_weight为空间细节分支和全局上下文分支融合后的分支上的loss权重,higher_branch_weight为空间细节分支上的loss权重,lower_branch_weight为全局上下文分支上的loss权重,若higher_branch_weight和lower_branch_weight未设置则不会计算这两个分支上的loss。
### train 训练接口
```
python
train
(
self
,
num_epochs
,
train_dataset
,
train_batch_size
=
2
,
eval_dataset
=
None
,
eval_batch_size
=
1
,
save_interval_epochs
=
1
,
log_interval_steps
=
2
,
save_dir
=
'output'
,
pretrain_weights
=
'CITYSCAPES'
,
optimizer
=
None
,
learning_rate
=
0.01
,
lr_decay_power
=
0.9
,
use_vdl
=
False
,
sensitivities_file
=
None
,
eval_metric_loss
=
0.05
,
early_stop
=
False
,
early_stop_patience
=
5
,
resume_checkpoint
=
None
):
```
> FastSCNN模型训练接口。
> **参数**
> >
> > - **num_epochs** (int): 训练迭代轮数。
> > - **train_dataset** (paddlex.datasets): 训练数据读取器。
> > - **train_batch_size** (int): 训练数据batch大小。同时作为验证数据batch大小。默认2。
> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认'output'
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'CITYSCAPES',则自动下载在CITYSCAPES图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认'CITYSCAPES'。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认的优化器:使用fluid.optimizer.Momentum优化方法,polynomial的学习率衰减策略。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认0.01。
> > - **lr_decay_power** (float): 默认优化器学习率衰减指数。默认0.9。
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在Cityscapes图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。
#### evaluate 评估接口
```
evaluate(self, eval_dataset, batch_size=1, epoch_id=None, return_details=False):
```
> FastSCNN模型评估接口。
> **参数**
> >
> > - **eval_dataset** (paddlex.datasets): 评估数据读取器。
> > - **batch_size** (int): 评估时的batch大小。默认1。
> > - **epoch_id** (int): 当前评估模型所在的训练轮数。
> > - **return_details** (bool): 是否返回详细信息。默认False。
> **返回值**
> >
> > - **dict**: 当return_details为False时,返回dict。包含关键字:'miou'、'category_iou'、'macc'、
> > 'category_acc'和'kappa',分别表示平均iou、各类别iou、平均准确率、各类别准确率和kappa系数。
> > - **tuple** (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
> > 包含关键字:'confusion_matrix',表示评估的混淆矩阵。
#### predict 预测接口
```
predict(self, im_file, transforms=None):
```
> FastSCNN模型预测接口。需要注意的是,只有在训练过程中定义了eval_dataset,模型在保存时才会将预测时的图像处理流程保存在`UNet.test_transforms`和`UNet.eval_transforms`中。如未在训练时定义eval_dataset,那在调用预测`predict`接口时,用户需要再重新定义test_transforms传入给`predict`接口。
> **参数**
> >
> > - **img_file** (str): 预测图像路径。
> > - **transforms** (paddlex.seg.transforms): 数据预处理操作。
> **返回值**
> >
> > - **dict**: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)。
new_tutorials/train/README.md
浏览文件 @
35a1019e
...
...
@@ -10,6 +10,9 @@
|detection/mask_rcnn_f50_fpn.py | 实例分割MaskRCNN | 垃圾分拣 |
|segmentation/deeplabv3p.py | 语义分割DeepLabV3| 视盘分割 |
|segmentation/unet.py | 语义分割UNet | 视盘分割 |
|segmentation/hrnet.py | 语义分割HRNet | 视盘分割 |
|segmentation/fast_scnn.py | 语义分割FastSCNN | 视盘分割 |
## 开始训练
在安装PaddleX后,使用如下命令开始训练
...
...
paddlex/cv/models/__init__.py
浏览文件 @
35a1019e
...
...
@@ -42,5 +42,6 @@ from .mask_rcnn import MaskRCNN
from
.unet
import
UNet
from
.deeplabv3p
import
DeepLabv3p
from
.hrnet
import
HRNet
from
.fast_scnn
import
FastSCNN
from
.load_model
import
load_model
from
.slim
import
prune
paddlex/cv/models/deeplabv3p.py
浏览文件 @
35a1019e
...
...
@@ -251,7 +251,7 @@ class DeepLabv3p(BaseAPI):
lr_decay_power (float): 默认优化器学习率衰减指数。默认0.9。
use_vdl (bool): 是否使用VisualDL进行可视化。默认False。
sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
则自动下载在
ImageNet
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
则自动下载在
Cityscapes
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
early_stop (bool): 是否使用提前终止训练策略。默认值为False。
early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
...
...
paddlex/cv/models/hrnet.py
浏览文件 @
35a1019e
...
...
@@ -93,11 +93,6 @@ class HRNet(DeepLabv3p):
if
mode
==
'train'
:
self
.
optimizer
.
minimize
(
model_out
)
outputs
[
'loss'
]
=
model_out
elif
mode
==
'eval'
:
outputs
[
'loss'
]
=
model_out
[
0
]
outputs
[
'pred'
]
=
model_out
[
1
]
outputs
[
'label'
]
=
model_out
[
2
]
outputs
[
'mask'
]
=
model_out
[
3
]
else
:
outputs
[
'pred'
]
=
model_out
[
0
]
outputs
[
'logit'
]
=
model_out
[
1
]
...
...
@@ -158,7 +153,7 @@ class HRNet(DeepLabv3p):
lr_decay_power (float): 默认优化器学习率多项式衰减系数。默认0.9。
use_vdl (bool): 是否使用VisualDL进行可视化。默认False。
sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
则自动下载在
ImageNet
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
则自动下载在
Cityscapes
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
early_stop (bool): 是否使用提前终止训练策略。默认值为False。
early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
...
...
paddlex/cv/models/unet.py
浏览文件 @
35a1019e
...
...
@@ -95,11 +95,6 @@ class UNet(DeepLabv3p):
if
mode
==
'train'
:
self
.
optimizer
.
minimize
(
model_out
)
outputs
[
'loss'
]
=
model_out
elif
mode
==
'eval'
:
outputs
[
'loss'
]
=
model_out
[
0
]
outputs
[
'pred'
]
=
model_out
[
1
]
outputs
[
'label'
]
=
model_out
[
2
]
outputs
[
'mask'
]
=
model_out
[
3
]
else
:
outputs
[
'pred'
]
=
model_out
[
0
]
outputs
[
'logit'
]
=
model_out
[
1
]
...
...
@@ -141,7 +136,7 @@ class UNet(DeepLabv3p):
lr_decay_power (float): 默认优化器学习率多项式衰减系数。默认0.9。
use_vdl (bool): 是否使用VisualDL进行可视化。默认False。
sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
则自动下载在
ImageNet
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
则自动下载在
Cityscapes
图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
early_stop (bool): 是否使用提前终止训练策略。默认值为False。
early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
...
...
paddlex/cv/models/utils/pretrain_weights.py
浏览文件 @
35a1019e
...
...
@@ -115,7 +115,9 @@ cityscapes_pretrain = {
'DeepLabv3p_Xception65_CITYSCAPES'
:
'https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz'
,
'HRNet_W18_CITYSCAPES'
:
'https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz'
'https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz'
,
'FastSCNN_CITYSCAPES'
:
'https://paddleseg.bj.bcebos.com/models/fast_scnn_cityscape.tar'
}
...
...
@@ -137,6 +139,10 @@ def get_pretrain_weights(flag, class_name, backbone, save_dir):
elif
class_name
==
'HRNet'
:
logging
.
warning
(
warning_info
.
format
(
class_name
,
flag
,
'IMAGENET'
))
flag
=
'IMAGENET'
elif
class_name
==
'FastSCNN'
:
logging
.
warning
(
warning_info
.
format
(
class_name
,
flag
,
'CITYSCAPES'
))
flag
=
'CITYSCAPES'
elif
flag
==
'CITYSCAPES'
:
model_name
=
'{}_{}'
.
format
(
class_name
,
backbone
)
if
class_name
==
'UNet'
:
...
...
@@ -153,9 +159,14 @@ def get_pretrain_weights(flag, class_name, backbone, save_dir):
model_name
=
'{}_{}'
.
format
(
class_name
,
backbone
)
logging
.
warning
(
warning_info
.
format
(
model_name
,
flag
,
'IMAGENET'
))
flag
=
'IMAGENET'
elif
flag
==
'IMAGENET'
and
class_name
==
'UNet'
:
elif
flag
==
'IMAGENET'
:
if
class_name
==
'UNet'
:
logging
.
warning
(
warning_info
.
format
(
class_name
,
flag
,
'COCO'
))
flag
=
'COCO'
elif
class_name
==
'FastSCNN'
:
logging
.
warning
(
warning_info
.
format
(
class_name
,
flag
,
'CITYSCAPES'
))
flag
=
'CITYSCAPES'
if
flag
==
'IMAGENET'
:
new_save_dir
=
save_dir
...
...
paddlex/cv/nets/__init__.py
浏览文件 @
35a1019e
...
...
@@ -20,6 +20,7 @@ from .mobilenet_v2 import MobileNetV2
from
.mobilenet_v3
import
MobileNetV3
from
.segmentation
import
UNet
from
.segmentation
import
DeepLabv3p
from
.segmentation
import
FastSCNN
from
.xception
import
Xception
from
.densenet
import
DenseNet
from
.shufflenet_v2
import
ShuffleNetV2
...
...
paddlex/cv/nets/segmentation/__init__.py
浏览文件 @
35a1019e
...
...
@@ -15,5 +15,6 @@
from
.unet
import
UNet
from
.deeplabv3p
import
DeepLabv3p
from
.hrnet
import
HRNet
from
.fast_scnn
import
FastSCNN
from
.model_utils
import
libs
from
.model_utils
import
loss
paddlex/cv/nets/segmentation/deeplabv3p.py
浏览文件 @
35a1019e
...
...
@@ -28,7 +28,6 @@ from .model_utils.libs import sigmoid_to_softmax
from
.model_utils.loss
import
softmax_with_loss
from
.model_utils.loss
import
dice_loss
from
.model_utils.loss
import
bce_loss
import
paddlex.utils.logging
as
logging
from
paddlex.cv.nets.xception
import
Xception
from
paddlex.cv.nets.mobilenet_v2
import
MobileNetV2
...
...
paddlex/cv/nets/segmentation/hrnet.py
浏览文件 @
35a1019e
...
...
@@ -27,7 +27,6 @@ from .model_utils.loss import softmax_with_loss
from
.model_utils.loss
import
dice_loss
from
.model_utils.loss
import
bce_loss
import
paddlex
import
paddlex.utils.logging
as
logging
class
HRNet
(
object
):
...
...
paddlex/cv/nets/segmentation/unet.py
浏览文件 @
35a1019e
...
...
@@ -27,7 +27,6 @@ from .model_utils.libs import sigmoid_to_softmax
from
.model_utils.loss
import
softmax_with_loss
from
.model_utils.loss
import
dice_loss
from
.model_utils.loss
import
bce_loss
import
paddlex.utils.logging
as
logging
class
UNet
(
object
):
...
...
@@ -106,7 +105,8 @@ class UNet(object):
name
=
'weights'
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
),
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.33
))
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.33
))
with
scope
(
"conv0"
):
data
=
bn_relu
(
conv
(
...
...
@@ -140,8 +140,7 @@ class UNet(object):
name
=
'weights'
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
),
initializer
=
fluid
.
initializer
.
XavierInitializer
(),
)
initializer
=
fluid
.
initializer
.
XavierInitializer
(),
)
with
scope
(
"up"
):
if
self
.
upsample_mode
==
'bilinear'
:
short_cut_shape
=
fluid
.
layers
.
shape
(
short_cut
)
...
...
@@ -197,7 +196,8 @@ class UNet(object):
name
=
'weights'
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
),
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.01
))
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.01
))
with
scope
(
"logit"
):
data
=
conv
(
data
,
...
...
paddlex/seg.py
浏览文件 @
35a1019e
...
...
@@ -18,5 +18,6 @@ from . import cv
UNet
=
cv
.
models
.
UNet
DeepLabv3p
=
cv
.
models
.
DeepLabv3p
HRNet
=
cv
.
models
.
HRNet
FastSCNN
=
cv
.
models
.
FastSCNN
transforms
=
cv
.
transforms
.
seg_transforms
visualize
=
cv
.
models
.
utils
.
visualize
.
visualize_segmentation
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录