未验证 提交 22503942 编写于 作者: J Jason 提交者: GitHub

Merge pull request #29 from SunAhong1993/syf_det

rm origin_shape
......@@ -135,7 +135,9 @@ paddlex.det.transforms.RandomExpand(ratio=4., prob=0.5, fill_value=[123.675, 116
### 参数
* **ratio** (float): 图像扩张的最大比例。默认为4.0。
* **prob** (float): 随机扩张的概率。默认为0.5。
* **fill_value** (list): 扩张图像的初始填充值(0-255)。默认为[123.675, 116.28, 103.53]。
* **fill_value** (list): 扩张图像的初始填充值(0-255)。默认为[123.675, 116.28, 103.53]。
【注意】该数据增强必须在数据增强Resize、ResizeByShort之前使用。
## RandomCrop类
```python
......@@ -152,7 +154,9 @@ paddlex.det.transforms.RandomCrop(aspect_ratio=[.5, 2.], thresholds=[.0, .1, .3,
(4) 如果cover_all_box为True且存在真实标注框的IoU小于thresh,则继续第3步。
(5) 筛选出位于候选裁剪区域内的真实标注框,若有效框的个数为0,则继续第3步,否则进行第4步。
4. 换算有效真值标注框相对候选裁剪区域的位置坐标。
5. 换算有效分割区域相对候选裁剪区域的位置坐标。
5. 换算有效分割区域相对候选裁剪区域的位置坐标。
【注意】该数据增强必须在数据增强Resize、ResizeByShort之前使用。
### 参数
* **aspect_ratio** (list): 裁剪后短边缩放比例的取值范围,以[min, max]形式表示。默认值为[.5, 2.]。
......
......@@ -112,7 +112,7 @@ class CocoDetection(VOCDetection):
im_info = {
'im_id': np.array([img_id]).astype('int32'),
'origin_shape': np.array([im_h, im_w]).astype('int32'),
'image_shape': np.array([im_h, im_w]).astype('int32'),
}
label_info = {
'is_crowd': is_crowd,
......
......@@ -143,7 +143,7 @@ class EasyDataDet(VOCDetection):
ann_ct += 1
im_info = {
'im_id': im_id,
'origin_shape': np.array([im_h, im_w]).astype('int32'),
'image_shape': np.array([im_h, im_w]).astype('int32'),
}
label_info = {
'is_crowd': is_crowd,
......
......@@ -146,7 +146,7 @@ class VOCDetection(Dataset):
im_info = {
'im_id': im_id,
'origin_shape': np.array([im_h, im_w]).astype('int32'),
'image_shape': np.array([im_h, im_w]).astype('int32'),
}
label_info = {
'is_crowd': is_crowd,
......
......@@ -58,8 +58,8 @@ class Compose:
im (str/np.ndarray): 图像路径/图像np.ndarray数据。
im_info (dict): 存储与图像相关的信息,dict中的字段如下:
- im_id (np.ndarray): 图像序列号,形状为(1,)。
- origin_shape (np.ndarray): 图像原始大小,形状为(2,),
origin_shape[0]为高,origin_shape[1]为宽。
- image_shape (np.ndarray): 图像原始大小,形状为(2,),
image_shape[0]为高,image_shape[1]为宽。
- mixup (list): list为[im, im_info, label_info],分别对应
与当前图像进行mixup的图像np.ndarray数据、图像相关信息、标注框相关信息;
注意,当前epoch若无需进行mixup,则无该字段。
......@@ -93,9 +93,6 @@ class Compose:
# make default im_info with [h, w, 1]
im_info['im_resize_info'] = np.array(
[im.shape[0], im.shape[1], 1.], dtype=np.float32)
# copy augment_shape from origin_shape
im_info['augment_shape'] = np.array([im.shape[0],
im.shape[1]]).astype('int32')
if not self.use_mixup:
if 'mixup' in im_info:
del im_info['mixup']
......@@ -387,16 +384,13 @@ class RandomHorizontalFlip:
raise TypeError(
'Cannot do RandomHorizontalFlip! ' +
'Becasuse the im_info and label_info can not be None!')
if 'augment_shape' not in im_info:
raise TypeError('Cannot do RandomHorizontalFlip! ' + \
'Becasuse augment_shape is not in im_info!')
if 'gt_bbox' not in label_info:
raise TypeError('Cannot do RandomHorizontalFlip! ' + \
'Becasuse gt_bbox is not in label_info!')
augment_shape = im_info['augment_shape']
image_shape = im_info['image_shape']
gt_bbox = label_info['gt_bbox']
height = augment_shape[0]
width = augment_shape[1]
height = image_shape[0]
width = image_shape[1]
if np.random.uniform(0, 1) < self.prob:
im = horizontal_flip(im)
......@@ -567,7 +561,7 @@ class MixupImage:
(2)拼接原图像标注框和mixup图像标注框。
(3)拼接原图像标注框类别和mixup图像标注框类别。
(4)原图像标注框混合得分乘以factor,mixup图像标注框混合得分乘以(1-factor),叠加2个结果。
3. 更新im_info中的augment_shape信息。
3. 更新im_info中的image_shape信息。
Args:
alpha (float): 随机beta分布的下限。默认为1.5。
......@@ -610,7 +604,7 @@ class MixupImage:
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
其中,im_info更新字段为:
- augment_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
- image_shape (np.ndarray): mixup后的图像高、宽二者组成的np.ndarray,形状为(2,)。
im_info删除的字段:
- mixup (list): 与当前字段进行mixup的图像相关信息。
label_info更新字段为:
......@@ -674,8 +668,8 @@ class MixupImage:
label_info['gt_score'] = gt_score
label_info['gt_class'] = gt_class
label_info['is_crowd'] = is_crowd
im_info['augment_shape'] = np.array([im.shape[0],
im.shape[1]]).astype('int32')
im_info['image_shape'] = np.array([im.shape[0],
im.shape[1]]).astype('int32')
im_info.pop('mixup')
if label_info is None:
return (im, im_info)
......@@ -721,7 +715,7 @@ class RandomExpand:
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
其中,im_info更新字段为:
- augment_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
- image_shape (np.ndarray): 扩张后的图像高、宽二者组成的np.ndarray,形状为(2,)。
label_info更新字段为:
- gt_bbox (np.ndarray): 随机扩张后真实标注框坐标,形状为(n, 4),
其中n代表真实标注框的个数。
......@@ -734,9 +728,6 @@ class RandomExpand:
raise TypeError(
'Cannot do RandomExpand! ' +
'Becasuse the im_info and label_info can not be None!')
if 'augment_shape' not in im_info:
raise TypeError('Cannot do RandomExpand! ' + \
'Becasuse augment_shape is not in im_info!')
if 'gt_bbox' not in label_info or \
'gt_class' not in label_info:
raise TypeError('Cannot do RandomExpand! ' + \
......@@ -744,9 +735,9 @@ class RandomExpand:
if np.random.uniform(0., 1.) < self.prob:
return (im, im_info, label_info)
augment_shape = im_info['augment_shape']
height = int(augment_shape[0])
width = int(augment_shape[1])
image_shape = im_info['image_shape']
height = int(image_shape[0])
width = int(image_shape[1])
expand_ratio = np.random.uniform(1., self.ratio)
h = int(height * expand_ratio)
......@@ -759,7 +750,7 @@ class RandomExpand:
canvas *= np.array(self.fill_value, dtype=np.float32)
canvas[y:y + height, x:x + width, :] = im
im_info['augment_shape'] = np.array([h, w]).astype('int32')
im_info['image_shape'] = np.array([h, w]).astype('int32')
if 'gt_bbox' in label_info and len(label_info['gt_bbox']) > 0:
label_info['gt_bbox'] += np.array([x, y] * 2, dtype=np.float32)
if 'gt_poly' in label_info and len(label_info['gt_poly']) > 0:
......@@ -815,12 +806,14 @@ class RandomCrop:
tuple: 当label_info为空时,返回的tuple为(im, im_info),分别对应图像np.ndarray数据、存储与图像相关信息的字典;
当label_info不为空时,返回的tuple为(im, im_info, label_info),分别对应图像np.ndarray数据、
存储与标注框相关信息的字典。
其中,label_info更新字段为:
- gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
其中,im_info更新字段为:
- image_shape (np.ndarray): 扩裁剪的图像高、宽二者组成的np.ndarray,形状为(2,)。
label_info更新字段为:
- gt_bbox (np.ndarray): 随机裁剪后真实标注框坐标,形状为(n, 4),
其中n代表真实标注框的个数。
- gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
- gt_class (np.ndarray): 随机裁剪后每个真实标注框对应的类别序号,形状为(n, 1),
其中n代表真实标注框的个数。
- gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
- gt_score (np.ndarray): 随机裁剪后每个真实标注框对应的混合得分,形状为(n, 1),
其中n代表真实标注框的个数。
Raises:
......@@ -830,9 +823,6 @@ class RandomCrop:
raise TypeError(
'Cannot do RandomCrop! ' +
'Becasuse the im_info and label_info can not be None!')
if 'augment_shape' not in im_info:
raise TypeError('Cannot do RandomCrop! ' + \
'Becasuse augment_shape is not in im_info!')
if 'gt_bbox' not in label_info or \
'gt_class' not in label_info:
raise TypeError('Cannot do RandomCrop! ' + \
......@@ -841,9 +831,9 @@ class RandomCrop:
if len(label_info['gt_bbox']) == 0:
return (im, im_info, label_info)
augment_shape = im_info['augment_shape']
w = augment_shape[1]
h = augment_shape[0]
image_shape = im_info['image_shape']
w = image_shape[1]
h = image_shape[0]
gt_bbox = label_info['gt_bbox']
thresholds = list(self.thresholds)
if self.allow_no_crop:
......@@ -902,7 +892,7 @@ class RandomCrop:
label_info['gt_bbox'] = np.take(cropped_box, valid_ids, axis=0)
label_info['gt_class'] = np.take(
label_info['gt_class'], valid_ids, axis=0)
im_info['augment_shape'] = np.array(
im_info['image_shape'] = np.array(
[crop_box[3] - crop_box[1],
crop_box[2] - crop_box[0]]).astype('int32')
if 'gt_score' in label_info:
......@@ -973,7 +963,7 @@ class ArrangeFasterRCNN:
im_resize_info = im_info['im_resize_info']
im_id = im_info['im_id']
im_shape = np.array(
(im_info['augment_shape'][0], im_info['augment_shape'][1], 1),
(im_info['image_shape'][0], im_info['image_shape'][1], 1),
dtype=np.float32)
gt_bbox = label_info['gt_bbox']
gt_class = label_info['gt_class']
......@@ -986,7 +976,7 @@ class ArrangeFasterRCNN:
'Becasuse the im_info can not be None!')
im_resize_info = im_info['im_resize_info']
im_shape = np.array(
(im_info['augment_shape'][0], im_info['augment_shape'][1], 1),
(im_info['image_shape'][0], im_info['image_shape'][1], 1),
dtype=np.float32)
outputs = (im, im_resize_info, im_shape)
return outputs
......@@ -1066,7 +1056,7 @@ class ArrangeMaskRCNN:
'Becasuse the im_info can not be None!')
im_resize_info = im_info['im_resize_info']
im_shape = np.array(
(im_info['augment_shape'][0], im_info['augment_shape'][1], 1),
(im_info['image_shape'][0], im_info['image_shape'][1], 1),
dtype=np.float32)
if self.mode == 'eval':
im_id = im_info['im_id']
......@@ -1117,7 +1107,7 @@ class ArrangeYOLOv3:
raise TypeError(
'Cannot do ArrangeYolov3! ' +
'Becasuse the im_info and label_info can not be None!')
im_shape = im_info['augment_shape']
im_shape = im_info['image_shape']
if len(label_info['gt_bbox']) != len(label_info['gt_class']):
raise ValueError("gt num mismatch: bbox and class.")
if len(label_info['gt_bbox']) != len(label_info['gt_score']):
......@@ -1141,7 +1131,7 @@ class ArrangeYOLOv3:
raise TypeError(
'Cannot do ArrangeYolov3! ' +
'Becasuse the im_info and label_info can not be None!')
im_shape = im_info['augment_shape']
im_shape = im_info['image_shape']
if len(label_info['gt_bbox']) != len(label_info['gt_class']):
raise ValueError("gt num mismatch: bbox and class.")
im_id = im_info['im_id']
......@@ -1160,6 +1150,6 @@ class ArrangeYOLOv3:
if im_info is None:
raise TypeError('Cannot do ArrangeYolov3! ' +
'Becasuse the im_info can not be None!')
im_shape = im_info['augment_shape']
im_shape = im_info['image_shape']
outputs = (im, im_shape)
return outputs
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册