提交 14f72db0 编写于 作者: S sunyanfang01

fix the bug

上级 5b18edf5
......@@ -19,6 +19,7 @@ from __future__ import print_function
from paddle import fluid
from .iou_loss import IouLoss
from .iou_aware_loss import IouAwareLoss
import paddlex
class YOLOv3Loss(object):
......@@ -157,7 +158,7 @@ class YOLOv3Loss(object):
loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls)
loss_cls = fluid.layers.elementwise_mul(loss_cls, tobj, axis=0)
loss_cls = fluid.layers.reduce_sum(loss_cls)
loss_cls = fluid.layers.reduce_sum(loss_cls, dim=[1, 2, 3, 4])
loss_xys.append(fluid.layers.reduce_mean(loss_x + loss_y))
loss_whs.append(fluid.layers.reduce_mean(loss_w + loss_h))
......@@ -270,6 +271,7 @@ class YOLOv3Loss(object):
# 1. get pred bbox, which is same with YOLOv3 infer mode, use yolo_box here
# NOTE: img_size is set as 1.0 to get noramlized pred bbox
batch_size = int(batch_size / paddlex.env_info['num'])
bbox, prob = fluid.layers.yolo_box(
x=output,
img_size=fluid.layers.ones(
......
......@@ -205,7 +205,7 @@ class YOLOv3:
p = fluid.layers.expand_as(gamma, input)
input_shape_tmp = fluid.layers.cast(input_shape, dtype="int64")
random_matrix = fluid.layers.uniform_random(
input_shape_tmp, dtype='float32', min=0.0, max=1.0, seed=1)
input_shape_tmp, dtype='float32', min=0.0, max=1.0)
one_zero_m = fluid.layers.less_than(random_matrix, p)
one_zero_m.stop_gradient = True
one_zero_m = fluid.layers.cast(one_zero_m, dtype="float32")
......
......@@ -1299,7 +1299,6 @@ class BatchRandomShape(DetTransform):
im = np.swapaxes(im, 1, 0)
data_list[0] = im
batch_data[data_id] = tuple(data_list)
np.save('im.npy', im)
return batch_data
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册