darknet.py 6.2 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import six
import math

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay


class DarkNet(object):
    """
    DarkNet, see https://pjreddie.com/darknet/yolo/
    Args:
        depth (int): network depth, currently only darknet 53 is supported
        norm_type (str): normalization type, 'bn' and 'sync_bn' are supported
        norm_decay (float): weight decay for normalization layer weights
    """

    def __init__(self,
                 depth=53,
                 num_classes=None,
                 norm_type='bn',
                 norm_decay=0.,
                 bn_act='leaky',
                 weight_prefix_name=''):
        assert depth in [53], "unsupported depth value"
        self.depth = depth
        self.num_classes = num_classes
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.depth_cfg = {53: ([1, 2, 8, 8, 4], self.basicblock)}
        self.bn_act = bn_act
        self.prefix_name = weight_prefix_name

    def _conv_norm(self,
                   input,
                   ch_out,
                   filter_size,
                   stride,
                   padding,
                   act='leaky',
                   name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            act=None,
            param_attr=ParamAttr(name=name + ".conv.weights"),
            bias_attr=False)

        bn_name = name + ".bn"
F
FlyingQianMM 已提交
71 72 73 74
        if self.num_classes:
            regularizer = None
        else:
            regularizer = L2Decay(float(self.norm_decay))
J
jiangjiajun 已提交
75
        bn_param_attr = ParamAttr(
F
FlyingQianMM 已提交
76
            regularizer=regularizer, name=bn_name + '.scale')
J
jiangjiajun 已提交
77
        bn_bias_attr = ParamAttr(
F
FlyingQianMM 已提交
78
            regularizer=regularizer, name=bn_name + '.offset')
J
jiangjiajun 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

        out = fluid.layers.batch_norm(
            input=conv,
            param_attr=bn_param_attr,
            bias_attr=bn_bias_attr,
            moving_mean_name=bn_name + '.mean',
            moving_variance_name=bn_name + '.var')

        # leaky relu here has `alpha` as 0.1, can not be set by
        # `act` param in fluid.layers.batch_norm above.
        if act == 'leaky':
            out = fluid.layers.leaky_relu(x=out, alpha=0.1)
        if act == 'relu':
            out = fluid.layers.relu(x=out)
        return out

    def _downsample(self,
                    input,
                    ch_out,
                    filter_size=3,
                    stride=2,
                    padding=1,
                    name=None):
        return self._conv_norm(
            input,
            ch_out=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            act=self.bn_act,
            name=name)

    def basicblock(self, input, ch_out, name=None):
        conv1 = self._conv_norm(
            input,
            ch_out=ch_out,
            filter_size=1,
            stride=1,
            padding=0,
            act=self.bn_act,
            name=name + ".0")
        conv2 = self._conv_norm(
            conv1,
            ch_out=ch_out * 2,
            filter_size=3,
            stride=1,
            padding=1,
            act=self.bn_act,
            name=name + ".1")
        out = fluid.layers.elementwise_add(x=input, y=conv2, act=None)
        return out

    def layer_warp(self, block_func, input, ch_out, count, name=None):
        out = block_func(input, ch_out=ch_out, name='{}.0'.format(name))
        for j in six.moves.xrange(1, count):
            out = block_func(out, ch_out=ch_out, name='{}.{}'.format(name, j))
        return out

    def __call__(self, input):
        """
        Get the backbone of DarkNet, that is output for the 5 stages.
        Args:
            input (Variable): input variable.
        Returns:
            The last variables of each stage.
        """
        stages, block_func = self.depth_cfg[self.depth]
        stages = stages[0:5]
        conv = self._conv_norm(
            input=input,
            ch_out=32,
            filter_size=3,
            stride=1,
            padding=1,
            act=self.bn_act,
            name=self.prefix_name + "yolo_input")
        downsample_ = self._downsample(
            input=conv,
            ch_out=conv.shape[1] * 2,
            name=self.prefix_name + "yolo_input.downsample")
        blocks = []
        for i, stage in enumerate(stages):
            block = self.layer_warp(
                block_func=block_func,
                input=downsample_,
                ch_out=32 * 2**i,
                count=stage,
                name=self.prefix_name + "stage.{}".format(i))
            blocks.append(block)
            if i < len(stages) - 1:  # do not downsaple in the last stage
                downsample_ = self._downsample(
                    input=block,
                    ch_out=block.shape[1] * 2,
                    name=self.prefix_name + "stage.{}.downsample".format(i))
        if self.num_classes is not None:
            pool = fluid.layers.pool2d(
                input=blocks[-1], pool_type='avg', global_pooling=True)
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            out = fluid.layers.fc(
                input=pool,
                size=self.num_classes,
                param_attr=ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv),
                    name='fc_weights'),
                bias_attr=ParamAttr(name='fc_offset'))
S
sunyanfang01 已提交
184
            return out
J
jiangjiajun 已提交
185

F
FlyingQianMM 已提交
186
        return blocks