instance_segmentation.md 6.2 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# 实例分割

## MaskRCNN类

```python
paddlex.det.MaskRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_ratios=[0.5, 1.0, 2.0], anchor_sizes=[32, 64, 128, 256, 512])

```

> 构建MaskRCNN检测器。**注意在MaskRCNN中,num_classes需要设置为类别数+背景类,如目标包括human、dog两种,则num_classes需设为3,多的一种为背景background类别**

> **参数**

> > - **num_classes** (int): 包含了背景类的类别数。默认为81。
F
FlyingQianMM 已提交
15
> > - **backbone** (str): MaskRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd', 'HRNet_W18']。默认为'ResNet50'。
J
jiangjiajun 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
> > - **with_fpn** (bool): 是否使用FPN结构。默认为True。
> > - **aspect_ratios** (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
> > - **anchor_sizes** (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。

#### train 训练接口

```python
train(self, num_epochs, train_dataset, train_batch_size=1, eval_dataset=None, save_interval_epochs=1, log_interval_steps=20, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/800, warmup_steps=500, warmup_start_lr=1.0 / 2400, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False, early_stop=False, early_stop_patience=5, resume_checkpoint=None)
```

> MaskRCNN模型的训练接口,函数内置了`piecewise`学习率衰减策略和`momentum`优化器。

> **参数**
>
> > - **num_epochs** (int): 训练迭代轮数。
> > - **train_dataset** (paddlex.datasets): 训练数据读取器。
> > - **train_batch_size** (int): 训练数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与显卡数量之商为验证数据batch大小。默认为1。
> > - **eval_dataset** (paddlex.datasets): 验证数据读取器。
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认值为'output'。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为None。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认为0.00125。
> > - **warmup_steps** (int):  默认优化器进行warmup过程的步数。默认为500。
> > - **warmup_start_lr** (int): 默认优化器warmup的起始学习率。默认为1.0/2400。
> > - **lr_decay_epochs** (list): 默认优化器的学习率衰减轮数。默认为[8, 11]。
> > - **lr_decay_gamma** (float): 默认优化器的学习率衰减率。默认为0.1。
> > - **metric** (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。

#### evaluate 评估接口

```python
evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_details=False)
```

> MaskRCNN模型的评估接口,模型评估后会返回在验证集上的指标box_mmap(metric指定为COCO时)和相应的seg_mmap。

> **参数**
>
> > - **eval_dataset** (paddlex.datasets): 验证数据读取器。
> > - **batch_size** (int): 验证数据批大小。默认为1。当前只支持设置为1。
> > - **epoch_id** (int): 当前评估模型所在的训练轮数。
> > - **metric** (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,根据用户传入的Dataset自动选择,如为VOCDetection,则`metric`为'VOC'; 如为COCODetection,则`metric`为'COCO'。
> > - **return_details** (bool): 是否返回详细信息。默认值为False。
> >
> **返回值**
>
> > - **tuple** (metrics, eval_details) | **dict** (metrics): 当`return_details`为True时,返回(metrics, eval_details),当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'和'segm_mmap'或者’bbox_map‘和'segm_map',分别表示预测框和分割区域平均准确率平均值在各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。eval_details为dict,包含关键字:'bbox',对应元素预测框结果列表,每个预测结果由图像id、预测框类别id、预测框坐标、预测框得分;'mask',对应元素预测区域结果列表,每个预测结果由图像id、预测区域类别id、预测区域坐标、预测区域得分;’gt‘:真实标注框和标注区域相关信息。

#### predict 预测接口

```python
predict(self, img_file, transforms=None)
```

> MaskRCNN模型预测接口。需要注意的是,只有在训练过程中定义了eval_dataset,模型在保存时才会将预测时的图像处理流程保存在FasterRCNN.test_transforms和FasterRCNN.eval_transforms中。如未在训练时定义eval_dataset,那在调用预测predict接口时,用户需要再重新定义test_transforms传入给predict接口。

> **参数**
>
> > - **img_file** (str): 预测图像路径。
> > - **transforms** (paddlex.det.transforms): 数据预处理操作。
>
> **返回值**
>
F
FlyingQianMM 已提交
85
> > - **list**: 预测结果列表,列表中每个元素均为一个dict,key'bbox', 'mask', 'category', 'category_id', 'score',分别表示每个预测目标的框坐标信息、Mask信息,类别、类别id、置信度。其中框坐标信息为[xmin, ymin, w, h],即左上角x, y坐标和框的宽和高。Mask信息为原图大小的二值图,1表示像素点属于预测类别,0表示像素点是背景。