visualize.cpp 5.3 KB
Newer Older
C
Channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "include/paddlex/visualize.h"

namespace PaddleX {
std::vector<int> GenerateColorMap(int num_class) {
  auto colormap = std::vector<int>(3 * num_class, 0);
  for (int i = 0; i < num_class; ++i) {
    int j = 0;
    int lab = i;
    while (lab) {
      colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j));
      colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j));
      colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j));
      ++j;
      lab >>= 3;
    }
  }
  return colormap;
}

cv::Mat VisualizeDet(const cv::Mat& img,
                     const DetResult& result,
                     const std::map<int, std::string>& labels,
                     const std::vector<int>& colormap,
                     float threshold) {
  cv::Mat vis_img = img.clone();
  auto boxes = result.boxes;
  for (int i = 0; i < boxes.size(); ++i) {
    if (boxes[i].score < threshold) {
      continue;
    }
    cv::Rect roi = cv::Rect(boxes[i].coordinate[0],
                            boxes[i].coordinate[1],
                            boxes[i].coordinate[2],
                            boxes[i].coordinate[3]);

    // 生成预测框和标题
    std::string text = boxes[i].category;
    int c1 = colormap[3 * boxes[i].category_id + 0];
    int c2 = colormap[3 * boxes[i].category_id + 1];
    int c3 = colormap[3 * boxes[i].category_id + 2];
    cv::Scalar roi_color = cv::Scalar(c1, c2, c3);
    text += std::to_string(static_cast<int>(boxes[i].score * 100)) + "%";
    int font_face = cv::FONT_HERSHEY_SIMPLEX;
    double font_scale = 0.5f;
    float thickness = 0.5;
    cv::Size text_size =
        cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
    cv::Point origin;
    origin.x = roi.x;
    origin.y = roi.y;

    // 生成预测框标题的背景
    cv::Rect text_back = cv::Rect(boxes[i].coordinate[0],
                                  boxes[i].coordinate[1] - text_size.height,
                                  text_size.width,
                                  text_size.height);

    // 绘图和文字
    cv::rectangle(vis_img, roi, roi_color, 2);
    cv::rectangle(vis_img, text_back, roi_color, -1);
    cv::putText(vis_img,
                text,
                origin,
                font_face,
                font_scale,
                cv::Scalar(255, 255, 255),
                thickness);

    // 生成实例分割mask
    if (boxes[i].mask.data.size() == 0) {
      continue;
    }
    cv::Mat bin_mask(result.mask_resolution,
                     result.mask_resolution,
                     CV_32FC1,
                     boxes[i].mask.data.data());
    cv::resize(bin_mask,
               bin_mask,
               cv::Size(boxes[i].mask.shape[0], boxes[i].mask.shape[1]));
    cv::threshold(bin_mask, bin_mask, 0.5, 1, cv::THRESH_BINARY);
    cv::Mat full_mask = cv::Mat::zeros(vis_img.size(), CV_8UC1);
    bin_mask.copyTo(full_mask(roi));
    cv::Mat mask_ch[3];
    mask_ch[0] = full_mask * c1;
    mask_ch[1] = full_mask * c2;
    mask_ch[2] = full_mask * c3;
    cv::Mat mask;
    cv::merge(mask_ch, 3, mask);
    cv::addWeighted(vis_img, 1, mask, 0.5, 0, vis_img);
  }
  return vis_img;
}

cv::Mat VisualizeSeg(const cv::Mat& img,
                     const SegResult& result,
                     const std::map<int, std::string>& labels,
                     const std::vector<int>& colormap) {
  std::vector<uint8_t> label_map(result.label_map.data.begin(),
                                 result.label_map.data.end());
  cv::Mat mask(result.label_map.shape[0],
               result.label_map.shape[1],
               CV_8UC1,
               label_map.data());
  cv::Mat color_mask = cv::Mat::zeros(
      result.label_map.shape[0], result.label_map.shape[1], CV_8UC3);
  int rows = img.rows;
  int cols = img.cols;
  for (int i = 0; i < rows; i++) {
    for (int j = 0; j < cols; j++) {
      int category_id = static_cast<int>(mask.at<uchar>(i, j));
      color_mask.at<cv::Vec3b>(i, j)[0] = colormap[3 * category_id + 0];
      color_mask.at<cv::Vec3b>(i, j)[1] = colormap[3 * category_id + 1];
      color_mask.at<cv::Vec3b>(i, j)[2] = colormap[3 * category_id + 2];
    }
  }
  return color_mask;
}

std::string generate_save_path(const std::string& save_dir,
                               const std::string& file_path) {
  if (access(save_dir.c_str(), 0) < 0) {
#ifdef _WIN32
    mkdir(save_dir.c_str());
#else
    if (mkdir(save_dir.c_str(), S_IRWXU) < 0) {
      std::cerr << "Fail to create " << save_dir << "directory." << std::endl;
    }
#endif
  }
  int pos = file_path.find_last_of(OS_PATH_SEP);
  std::string image_name(file_path.substr(pos + 1));
  return save_dir + OS_PATH_SEP + image_name;
}
}  // namespace of PaddleX