diou_loss.py 4.2 KB
Newer Older
S
sunyanfang01 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
S
sunyanfang01 已提交
2
#
S
sunyanfang01 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
S
sunyanfang01 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
S
sunyanfang01 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
S
sunyanfang01 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from paddle import fluid
from .giou_loss import GiouLoss

class DiouLoss(GiouLoss):
    """
    Distance-IoU Loss, see https://arxiv.org/abs/1911.08287
    Args:
        loss_weight (float): diou loss weight, default as 10 in faster-rcnn
        is_cls_agnostic (bool): flag of class-agnostic
        num_classes (int): class num
        use_complete_iou_loss (bool): whether to use complete iou loss
    """

    def __init__(self,
                 loss_weight=10.,
                 is_cls_agnostic=False,
                 num_classes=81,
                 use_complete_iou_loss=True):
        super(DiouLoss, self).__init__(
            loss_weight=loss_weight,
            is_cls_agnostic=is_cls_agnostic,
            num_classes=num_classes)
        self.use_complete_iou_loss = use_complete_iou_loss

    def __call__(self,
                 x,
                 y,
                 inside_weight=None,
                 outside_weight=None,
                 bbox_reg_weight=[0.1, 0.1, 0.2, 0.2]):
        eps = 1.e-10
        x1, y1, x2, y2 = self.bbox_transform(x, bbox_reg_weight)
        x1g, y1g, x2g, y2g = self.bbox_transform(y, bbox_reg_weight)

        cx = (x1 + x2) / 2
        cy = (y1 + y2) / 2
        w = x2 - x1
        h = y2 - y1

        cxg = (x1g + x2g) / 2
        cyg = (y1g + y2g) / 2
        wg = x2g - x1g
        hg = y2g - y1g

        x2 = fluid.layers.elementwise_max(x1, x2)
        y2 = fluid.layers.elementwise_max(y1, y2)

        # A and B
        xkis1 = fluid.layers.elementwise_max(x1, x1g)
        ykis1 = fluid.layers.elementwise_max(y1, y1g)
        xkis2 = fluid.layers.elementwise_min(x2, x2g)
        ykis2 = fluid.layers.elementwise_min(y2, y2g)

        # A or B
        xc1 = fluid.layers.elementwise_min(x1, x1g)
        yc1 = fluid.layers.elementwise_min(y1, y1g)
        xc2 = fluid.layers.elementwise_max(x2, x2g)
        yc2 = fluid.layers.elementwise_max(y2, y2g)

        intsctk = (xkis2 - xkis1) * (ykis2 - ykis1)
        intsctk = intsctk * fluid.layers.greater_than(
            xkis2, xkis1) * fluid.layers.greater_than(ykis2, ykis1)
        unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g
                                                        ) - intsctk + eps
        iouk = intsctk / unionk

        # DIOU term
        dist_intersection = (cx - cxg) * (cx - cxg) + (cy - cyg) * (cy - cyg)
        dist_union = (xc2 - xc1) * (xc2 - xc1) + (yc2 - yc1) * (yc2 - yc1)
        diou_term = (dist_intersection + eps) / (dist_union + eps)

        # CIOU term
        ciou_term = 0
        if self.use_complete_iou_loss:
            ar_gt = wg / hg
            ar_pred = w / h
            arctan = fluid.layers.atan(ar_gt) - fluid.layers.atan(ar_pred)
            ar_loss = 4. / np.pi / np.pi * arctan * arctan
            alpha = ar_loss / (1 - iouk + ar_loss + eps)
            alpha.stop_gradient = True
            ciou_term = alpha * ar_loss

        iou_weights = 1
        if inside_weight is not None and outside_weight is not None:
            inside_weight = fluid.layers.reshape(inside_weight, shape=(-1, 4))
            outside_weight = fluid.layers.reshape(outside_weight, shape=(-1, 4))

            inside_weight = fluid.layers.reduce_mean(inside_weight, dim=1)
            outside_weight = fluid.layers.reduce_mean(outside_weight, dim=1)

            iou_weights = inside_weight * outside_weight

        class_weight = 2 if self.is_cls_agnostic else self.num_classes
        diou = fluid.layers.reduce_mean(
            (1 - iouk + ciou_term + diou_term) * iou_weights) * class_weight

        return diou * self.loss_weight