bbox_head.py 10.2 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Normal, Xavier
from paddle.fluid.regularizer import L2Decay
from paddle.fluid.initializer import MSRA

S
sunyanfang01 已提交
27

J
jiangjiajun 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
__all__ = ['BBoxHead', 'TwoFCHead']


class TwoFCHead(object):
    """
    RCNN head with two Fully Connected layers

    Args:
        mlp_dim (int): num of filters for the fc layers
    """

    def __init__(self, mlp_dim=1024):
        super(TwoFCHead, self).__init__()
        self.mlp_dim = mlp_dim

    def __call__(self, roi_feat):
        fan = roi_feat.shape[1] * roi_feat.shape[2] * roi_feat.shape[3]

        fc6 = fluid.layers.fc(
            input=roi_feat,
            size=self.mlp_dim,
            act='relu',
            name='fc6',
            param_attr=ParamAttr(
                name='fc6_w', initializer=Xavier(fan_out=fan)),
            bias_attr=ParamAttr(
                name='fc6_b', learning_rate=2., regularizer=L2Decay(0.)))
        head_feat = fluid.layers.fc(
            input=fc6,
            size=self.mlp_dim,
            act='relu',
            name='fc7',
            param_attr=ParamAttr(name='fc7_w', initializer=Xavier()),
            bias_attr=ParamAttr(
                name='fc7_b', learning_rate=2., regularizer=L2Decay(0.)))

        return head_feat


class BBoxHead(object):
    def __init__(
            self,
            head,
            #box_coder
            prior_box_var=[0.1, 0.1, 0.2, 0.2],
            code_type='decode_center_size',
            box_normalized=False,
            axis=1,
            #MultiClassNMS
            score_threshold=.05,
            nms_top_k=-1,
            keep_top_k=100,
            nms_threshold=.5,
            normalized=False,
            nms_eta=1.0,
            background_label=0,
            #bbox_loss
            sigma=1.0,
S
sunyanfang01 已提交
86 87
            num_classes=81,
            bbox_loss_type='SmoothL1Loss'):
J
jiangjiajun 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        super(BBoxHead, self).__init__()
        self.head = head
        self.prior_box_var = prior_box_var
        self.code_type = code_type
        self.box_normalized = box_normalized
        self.axis = axis
        self.score_threshold = score_threshold
        self.nms_top_k = nms_top_k
        self.keep_top_k = keep_top_k
        self.nms_threshold = nms_threshold
        self.normalized = normalized
        self.nms_eta = nms_eta
        self.background_label = background_label
        self.sigma = sigma
        self.num_classes = num_classes
        self.head_feat = None
S
sunyanfang01 已提交
104
        self.bbox_loss_type = bbox_loss_type
J
jiangjiajun 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    def get_head_feat(self, input=None):
        """
        Get the bbox head feature map.
        """

        if input is not None:
            feat = self.head(input)
            if isinstance(feat, OrderedDict):
                feat = list(feat.values())[0]
            self.head_feat = feat
        return self.head_feat

    def _get_output(self, roi_feat):
        """
        Get bbox head output.

        Args:
            roi_feat (Variable): RoI feature from RoIExtractor.

        Returns:
            cls_score(Variable): Output of rpn head with shape of
                [N, num_anchors, H, W].
            bbox_pred(Variable): Output of rpn head with shape of
                [N, num_anchors * 4, H, W].
        """
        head_feat = self.get_head_feat(roi_feat)
S
sunyanfang01 已提交
132
        
J
jiangjiajun 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        # when ResNetC5 output a single feature map
        if not isinstance(self.head, TwoFCHead):
            head_feat = fluid.layers.pool2d(
                head_feat, pool_type='avg', global_pooling=True)
        cls_score = fluid.layers.fc(
            input=head_feat,
            size=self.num_classes,
            act=None,
            name='cls_score',
            param_attr=ParamAttr(
                name='cls_score_w', initializer=Normal(loc=0.0, scale=0.01)),
            bias_attr=ParamAttr(
                name='cls_score_b', learning_rate=2., regularizer=L2Decay(0.)))
        bbox_pred = fluid.layers.fc(
            input=head_feat,
            size=4 * self.num_classes,
            act=None,
            name='bbox_pred',
            param_attr=ParamAttr(
                name='bbox_pred_w', initializer=Normal(loc=0.0, scale=0.001)),
            bias_attr=ParamAttr(
                name='bbox_pred_b', learning_rate=2., regularizer=L2Decay(0.)))
        return cls_score, bbox_pred

    def get_loss(self, roi_feat, labels_int32, bbox_targets,
                 bbox_inside_weights, bbox_outside_weights):
        """
        Get bbox_head loss.

        Args:
            roi_feat (Variable): RoI feature from RoIExtractor.
            labels_int32(Variable): Class label of a RoI with shape [P, 1].
                P is the number of RoI.
            bbox_targets(Variable): Box label of a RoI with shape
                [P, 4 * class_nums].
            bbox_inside_weights(Variable): Indicates whether a box should
                contribute to loss. Same shape as bbox_targets.
            bbox_outside_weights(Variable): Indicates whether a box should
                contribute to loss. Same shape as bbox_targets.

        Return:
            Type: Dict
                loss_cls(Variable): bbox_head loss.
                loss_bbox(Variable): bbox_head loss.
        """

        cls_score, bbox_pred = self._get_output(roi_feat)
        labels_int64 = fluid.layers.cast(x=labels_int32, dtype='int64')
        labels_int64.stop_gradient = True
        loss_cls = fluid.layers.softmax_with_cross_entropy(
            logits=cls_score, label=labels_int64, numeric_stable_mode=True)
        loss_cls = fluid.layers.reduce_mean(loss_cls)
S
sunyanfang01 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        if self.bbox_loss_type == 'CiouLoss':
            from .loss.diou_loss import DiouLoss
            loss_obj = DiouLoss(loss_weight=10.,
                                is_cls_agnostic=False,
                                num_classes=self.num_classes,
                                use_complete_iou_loss=True)
        elif self.bbox_loss_type == 'DiouLoss':
            from .loss.diou_loss import DiouLoss
            loss_obj = DiouLoss(loss_weight=12.,
                                is_cls_agnostic=False,
                                num_classes=self.num_classes,
                                use_complete_iou_loss=False)
        elif self.bbox_loss_type == 'GiouLoss':
            from .loss.giou_loss import GiouLoss
            loss_obj = GiouLoss(loss_weight=10.,
                                is_cls_agnostic=False,
                                num_classes=self.num_classes)
        else:
S
sunyanfang01 已提交
203 204 205
            from .loss.smoothl1_loss import SmoothL1Loss
            loss_obj = SmoothL1Loss(self.sigma)
        loss_bbox = loss_obj(
S
sunyanfang01 已提交
206 207 208
                x=bbox_pred,
                y=bbox_targets,
                inside_weight=bbox_inside_weights,
S
sunyanfang01 已提交
209
                outside_weight=bbox_outside_weights)
J
jiangjiajun 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        loss_bbox = fluid.layers.reduce_mean(loss_bbox)
        return {'loss_cls': loss_cls, 'loss_bbox': loss_bbox}

    def get_prediction(self,
                       roi_feat,
                       rois,
                       im_info,
                       im_shape,
                       return_box_score=False):
        """
        Get prediction bounding box in test stage.

        Args:
            roi_feat (Variable): RoI feature from RoIExtractor.
            rois (Variable): Output of generate_proposals in rpn head.
            im_info (Variable): A 2-D LoDTensor with shape [B, 3]. B is the
                number of input images, each element consists of im_height,
                im_width, im_scale.
            im_shape (Variable): Actual shape of original image with shape
                [B, 3]. B is the number of images, each element consists of
                original_height, original_width, 1

        Returns:
            pred_result(Variable): Prediction result with shape [N, 6]. Each
                row has 6 values: [label, confidence, xmin, ymin, xmax, ymax].
                N is the total number of prediction.
        """
        cls_score, bbox_pred = self._get_output(roi_feat)

        im_scale = fluid.layers.slice(im_info, [1], starts=[2], ends=[3])
        im_scale = fluid.layers.sequence_expand(im_scale, rois)
        boxes = rois / im_scale
        cls_prob = fluid.layers.softmax(cls_score, use_cudnn=False)
        bbox_pred = fluid.layers.reshape(bbox_pred, (-1, self.num_classes, 4))
        decoded_box = fluid.layers.box_coder(
            prior_box=boxes,
            target_box=bbox_pred,
            prior_box_var=self.prior_box_var,
            code_type=self.code_type,
            box_normalized=self.box_normalized,
            axis=self.axis)
        cliped_box = fluid.layers.box_clip(input=decoded_box, im_info=im_shape)
        if return_box_score:
            return {'bbox': cliped_box, 'score': cls_prob}
S
sunyanfang01 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        if self.bbox_loss_type == 'CiouLoss':
            from .nms import MultiClassDiouNMS
            nms_obj = MultiClassDiouNMS(score_threshold=self.score_threshold,
                                        nms_threshold=self.nms_threshold,
                                        keep_top_k=self.keep_top_k)
            pred_result = nms_obj(bboxes=cliped_box, scores=cls_prob)
        else:
            pred_result = fluid.layers.multiclass_nms(
                bboxes=cliped_box,
                scores=cls_prob,
                score_threshold=self.score_threshold,
                nms_top_k=self.nms_top_k,
                keep_top_k=self.keep_top_k,
                nms_threshold=self.nms_threshold,
                normalized=self.normalized,
                nms_eta=self.nms_eta,
                background_label=self.background_label)
J
jiangjiajun 已提交
271
        return {'bbox': pred_result}