README.md 9.2 KB
Newer Older
L
LaraStuStu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
<h1 align="center">
  <img src="labelme/icons/icon.png"><br/>labelme
</h1>

<h4 align="center">
  Image Polygonal Annotation with Python
</h4>

<div align="center">
  <a href="https://pypi.python.org/pypi/labelme"><img src="https://img.shields.io/pypi/v/labelme.svg"></a>
  <a href="https://pypi.org/project/labelme"><img src="https://img.shields.io/pypi/pyversions/labelme.svg"></a>
  <a href="https://travis-ci.org/wkentaro/labelme"><img src="https://travis-ci.org/wkentaro/labelme.svg?branch=master"></a>
  <a href="https://hub.docker.com/r/wkentaro/labelme"><img src="https://img.shields.io/docker/build/wkentaro/labelme.svg"></a>
</div>

<br/>

<div align="center">
  <img src="examples/instance_segmentation/.readme/annotation.jpg" width="70%">
</div>

## Description

Labelme is a graphical image annotation tool inspired by <http://labelme.csail.mit.edu>.  
It is written in Python and uses Qt for its graphical interface.

<img src="examples/instance_segmentation/data_dataset_voc/JPEGImages/2011_000006.jpg" width="19%" /> <img src="examples/instance_segmentation/data_dataset_voc/SegmentationClassPNG/2011_000006.png" width="19%" /> <img src="examples/instance_segmentation/data_dataset_voc/SegmentationClassVisualization/2011_000006.jpg" width="19%" /> <img src="examples/instance_segmentation/data_dataset_voc/SegmentationObjectPNG/2011_000006.png" width="19%" /> <img src="examples/instance_segmentation/data_dataset_voc/SegmentationObjectVisualization/2011_000006.jpg" width="19%" />  
<i>VOC dataset example of instance segmentation.</i>

<img src="examples/semantic_segmentation/.readme/annotation.jpg" width="32%" /> <img src="examples/bbox_detection/.readme/annotation.jpg" width="30%" /> <img src="examples/classification/.readme/annotation_cat.jpg" width="35%" />  
<i>Other examples (semantic segmentation, bbox detection, and classification).</i>

<img src="https://user-images.githubusercontent.com/4310419/47907116-85667800-de82-11e8-83d0-b9f4eb33268f.gif" width="30%" /> <img src="https://user-images.githubusercontent.com/4310419/47922172-57972880-deae-11e8-84f8-e4324a7c856a.gif" width="30%" /> <img src="https://user-images.githubusercontent.com/14256482/46932075-92145f00-d080-11e8-8d09-2162070ae57c.png" width="32%" />  
<i>Various primitives (polygon, rectangle, circle, line, and point).</i>


## Features

- [x] Image annotation for polygon, rectangle, circle, line and point. ([tutorial](examples/tutorial))
- [x] Image flag annotation for classification and cleaning. ([#166](https://github.com/wkentaro/labelme/pull/166))
- [x] Video annotation. ([video annotation](examples/video_annotation))
- [x] GUI customization (predefined labels / flags, auto-saving, label validation, etc). ([#144](https://github.com/wkentaro/labelme/pull/144))
- [x] Exporting VOC-format dataset for semantic/instance segmentation. ([semantic segmentation](examples/semantic_segmentation), [instance segmentation](examples/instance_segmentation))
- [x] Exporting COCO-format dataset for instance segmentation. ([instance segmentation](examples/instance_segmentation))



## Requirements

- Ubuntu / macOS / Windows
- Python2 / Python3
- [PyQt4 / PyQt5](http://www.riverbankcomputing.co.uk/software/pyqt/intro) / [PySide2](https://wiki.qt.io/PySide2_GettingStarted)


## Installation

There are options:

- Platform agonistic installation: [Anaconda](#anaconda), [Docker](#docker)
- Platform specific installation: [Ubuntu](#ubuntu), [macOS](#macos), [Windows](#windows)

### Anaconda

You need install [Anaconda](https://www.continuum.io/downloads), then run below:

```bash
# python2
conda create --name=labelme python=2.7
source activate labelme
# conda install -c conda-forge pyside2
conda install pyqt
pip install labelme
# if you'd like to use the latest version. run below:
# pip install git+https://github.com/wkentaro/labelme.git

# python3
conda create --name=labelme python=3.6
source activate labelme
# conda install -c conda-forge pyside2
# conda install pyqt
pip install pyqt5  # pyqt5 can be installed via pip on python3
pip install labelme
```

### Docker

You need install [docker](https://www.docker.com), then run below:

```bash
wget https://raw.githubusercontent.com/wkentaro/labelme/master/labelme/cli/on_docker.py -O labelme_on_docker
chmod u+x labelme_on_docker

# Maybe you need http://sourabhbajaj.com/blog/2017/02/07/gui-applications-docker-mac/ on macOS
./labelme_on_docker examples/tutorial/apc2016_obj3.jpg -O examples/tutorial/apc2016_obj3.json
./labelme_on_docker examples/semantic_segmentation/data_annotated
```

### Ubuntu

```bash
# Ubuntu 14.04 / Ubuntu 16.04
# Python2
# sudo apt-get install python-qt4  # PyQt4
sudo apt-get install python-pyqt5  # PyQt5
sudo pip install labelme
# Python3
sudo apt-get install python3-pyqt5  # PyQt5
sudo pip3 install labelme
```

### Ubuntu 19.10+ / Debian (sid)

```bash
sudo apt-get install labelme
```

### macOS

```bash
# macOS Sierra
brew install pyqt  # maybe pyqt5
pip install labelme  # both python2/3 should work

# or install standalone executable / app
# NOTE: this only installs the `labelme` command
brew install wkentaro/labelme/labelme
brew cask install wkentaro/labelme/labelme
```

### Windows

Firstly, follow instruction in [Anaconda](#anaconda).

```bash
# Pillow 5 causes dll load error on Windows.
# https://github.com/wkentaro/labelme/pull/174
conda install pillow=4.0.0
```


## Usage

Run `labelme --help` for detail.  
The annotations are saved as a [JSON](http://www.json.org/) file.

```bash
labelme  # just open gui

# tutorial (single image example)
cd examples/tutorial
labelme apc2016_obj3.jpg  # specify image file
labelme apc2016_obj3.jpg -O apc2016_obj3.json  # close window after the save
labelme apc2016_obj3.jpg --nodata  # not include image data but relative image path in JSON file
labelme apc2016_obj3.jpg \
  --labels highland_6539_self_stick_notes,mead_index_cards,kong_air_dog_squeakair_tennis_ball  # specify label list

# semantic segmentation example
cd examples/semantic_segmentation
labelme data_annotated/  # Open directory to annotate all images in it
labelme data_annotated/ --labels labels.txt  # specify label list with a file
```

For more advanced usage, please refer to the examples:

* [Tutorial (Single Image Example)](examples/tutorial)
* [Semantic Segmentation Example](examples/semantic_segmentation)
* [Instance Segmentation Example](examples/instance_segmentation)
* [Video Annotation Example](examples/video_annotation)

### Command Line Arguemnts
- `--output` specifies the location that annotations will be written to. If the location ends with .json, a single annotation will be written to this file. Only one image can be annotated if a location is specified with .json. If the location does not end with .json, the program will assume it is a directory. Annotations will be stored in this directory with a name that corresponds to the image that the annotation was made on.
- The first time you run labelme, it will create a config file in `~/.labelmerc`. You can edit this file and the changes will be applied the next time that you launch labelme. If you would prefer to use a config file from another location, you can specify this file with the `--config` flag.
- Without the `--nosortlabels` flag, the program will list labels in alphabetical order. When the program is run with this flag, it will display labels in the order that they are provided.
- Flags are assigned to an entire image. [Example](examples/classification)
- Labels are assigned to a single polygon. [Example](examples/bbox_detection)

## FAQ

- **How to convert JSON file to numpy array?** See [examples/tutorial](examples/tutorial#convert-to-dataset).
- **How to load label PNG file?** See [examples/tutorial](examples/tutorial#how-to-load-label-png-file).
- **How to get annotations for semantic segmentation?** See [examples/semantic_segmentation](examples/semantic_segmentation).
- **How to get annotations for instance segmentation?** See [examples/instance_segmentation](examples/instance_segmentation).


## Testing

```bash
pip install hacking pytest pytest-qt
flake8 .
pytest -v tests
```


## Developing

```bash
git clone https://github.com/wkentaro/labelme.git
cd labelme

# Install anaconda3 and labelme
curl -L https://github.com/wkentaro/dotfiles/raw/master/local/bin/install_anaconda3.sh | bash -s .
source .anaconda3/bin/activate
pip install -e .
```


## How to build standalone executable

Below shows how to build the standalone executable on macOS, Linux and Windows.  
Also, there are pre-built executables in
[the release section](https://github.com/wkentaro/labelme/releases).

```bash
# Setup conda
conda create --name labelme python==3.6.0
conda activate labelme

# Build the standalone executable
pip install .
pip install pyinstaller
pyinstaller labelme.spec
dist/labelme --version
```


## Acknowledgement

This repo is the fork of [mpitid/pylabelme](https://github.com/mpitid/pylabelme),
whose development has already stopped.


## Cite This Project

If you use this project in your research or wish to refer to the baseline results published in the README, please use the following BibTeX entry.

```bash
@misc{labelme2016,
  author =       {Ketaro Wada},
  title =        {{labelme: Image Polygonal Annotation with Python}},
  howpublished = {\url{https://github.com/wkentaro/labelme}},
  year =         {2016}
}
```