ppyolo.py 26.3 KB
Newer Older
F
FlyingQianMM 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
import math
import tqdm
import os.path as osp
import numpy as np
from multiprocessing.pool import ThreadPool
import paddle.fluid as fluid
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.optimizer import ExponentialMovingAverage
import paddlex.utils.logging as logging
import paddlex
import copy
from paddlex.cv.transforms import arrange_transforms
from paddlex.cv.datasets import generate_minibatch
from .base import BaseAPI
from collections import OrderedDict
from .utils.detection_eval import eval_results, bbox2out


class PPYOLO(BaseAPI):
    """构建PPYOLO,并实现其训练、评估、预测和模型导出。

    Args:
        num_classes (int): 类别数。默认为80。
        backbone (str): PPYOLO的backbone网络,取值范围为['ResNet50_vd']。默认为'ResNet50_vd'。
        anchors (list|tuple): anchor框的宽度和高度,为None时表示使用默认值
                    [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                    [59, 119], [116, 90], [156, 198], [373, 326]]。
        anchor_masks (list|tuple): 在计算PPYOLO损失时,使用anchor的mask索引,为None时表示使用默认值
                    [[6, 7, 8], [3, 4, 5], [0, 1, 2]]。
        ignore_threshold (float): 在计算PPYOLO损失时,IoU大于`ignore_threshold`的预测框的置信度被忽略。默认为0.7。
        nms_score_threshold (float): 检测框的置信度得分阈值,置信度得分低于阈值的框应该被忽略。默认为0.01。
        nms_topk (int): 进行NMS时,根据置信度保留的最大检测框数。默认为1000。
        nms_keep_topk (int): 进行NMS后,每个图像要保留的总检测框数。默认为100。
        nms_iou_threshold (float): 进行NMS时,用于剔除检测框IOU的阈值。默认为0.45。
        label_smooth (bool): 是否使用label smooth。默认值为False。
        train_random_shapes (list|tuple): 训练时从列表中随机选择图像大小。默认值为[320, 352, 384, 416, 448, 480, 512, 544, 576, 608]。
    """

    def __init__(
            self,
            num_classes=80,
            backbone='ResNet50_vd',
            with_dcn_v2=True,
            # YOLO Head
            anchors=None,
            anchor_masks=None,
            use_coord_conv=True,
            use_iou_aware=True,
            use_spp=True,
            use_drop_block=True,
            scale_x_y=1.05,
            # PPYOLO Loss
            ignore_threshold=0.7,
            label_smooth=False,
            use_iou_loss=True,
            # NMS
            use_matrix_nms=True,
            nms_score_threshold=0.01,
            nms_topk=1000,
            nms_keep_topk=100,
            nms_iou_threshold=0.45,
            train_random_shapes=[
                320, 352, 384, 416, 448, 480, 512, 544, 576, 608
            ]):
        self.init_params = locals()
        super(PPYOLO, self).__init__('detector')
        backbones = ['ResNet50_vd']
        assert backbone in backbones, "backbone should be one of {}".format(
            backbones)
        self.backbone = backbone
        self.num_classes = num_classes
        self.anchors = anchors
        self.anchor_masks = anchor_masks
        if anchors is None:
            self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                            [59, 119], [116, 90], [156, 198], [373, 326]]
        if anchor_masks is None:
            self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
        self.ignore_threshold = ignore_threshold
        self.nms_score_threshold = nms_score_threshold
        self.nms_topk = nms_topk
        self.nms_keep_topk = nms_keep_topk
        self.nms_iou_threshold = nms_iou_threshold
        self.label_smooth = label_smooth
        self.sync_bn = True
        self.train_random_shapes = train_random_shapes
        self.fixed_input_shape = None
        self.use_fine_grained_loss = False
        if use_coord_conv or use_iou_aware or use_spp or use_drop_block or use_iou_loss:
            self.use_fine_grained_loss = True
        self.use_coord_conv = use_coord_conv
        self.use_iou_aware = use_iou_aware
        self.use_spp = use_spp
        self.use_drop_block = use_drop_block
        self.use_iou_loss = use_iou_loss
        self.scale_x_y = scale_x_y
        self.max_height = 608
        self.max_width = 608
        self.use_matrix_nms = use_matrix_nms
        self.use_ema = False
        self.with_dcn_v2 = with_dcn_v2

    def _get_backbone(self, backbone_name):
        if backbone_name == 'ResNet50_vd':
            backbone = paddlex.cv.nets.ResNet(
                norm_type='sync_bn',
                layers=50,
                freeze_norm=False,
                norm_decay=0.,
                feature_maps=[3, 4, 5],
                freeze_at=0,
                variant='d',
                dcn_v2_stages=[5] if self.with_dcn_v2 else [])
        return backbone

    def build_net(self, mode='train'):
        model = paddlex.cv.nets.detection.YOLOv3(
            backbone=self._get_backbone(self.backbone),
            num_classes=self.num_classes,
            mode=mode,
            anchors=self.anchors,
            anchor_masks=self.anchor_masks,
            ignore_threshold=self.ignore_threshold,
            label_smooth=self.label_smooth,
            nms_score_threshold=self.nms_score_threshold,
            nms_topk=self.nms_topk,
            nms_keep_topk=self.nms_keep_topk,
            nms_iou_threshold=self.nms_iou_threshold,
            fixed_input_shape=self.fixed_input_shape,
            coord_conv=self.use_coord_conv,
            iou_aware=self.use_iou_aware,
            scale_x_y=self.scale_x_y,
            spp=self.use_spp,
            drop_block=self.use_drop_block,
            use_matrix_nms=self.use_matrix_nms,
            use_fine_grained_loss=self.use_fine_grained_loss,
            use_iou_loss=self.use_iou_loss,
            batch_size=self.batch_size_per_gpu
            if hasattr(self, 'batch_size_per_gpu') else 8)
        if mode == 'train' and self.use_iou_loss or self.use_iou_aware:
            model.max_height = self.max_height
            model.max_width = self.max_width
        inputs = model.generate_inputs()
        model_out = model.build_net(inputs)
        outputs = OrderedDict([('bbox', model_out)])
        if mode == 'train':
            self.optimizer.minimize(model_out)
            outputs = OrderedDict([('loss', model_out)])
            if self.use_ema:
                global_steps = _decay_step_counter()
                self.ema = ExponentialMovingAverage(
                    self.ema_decay, thres_steps=global_steps)
                self.ema.update()
        return inputs, outputs

    def default_optimizer(self, learning_rate, warmup_steps, warmup_start_lr,
                          lr_decay_epochs, lr_decay_gamma,
                          num_steps_each_epoch):
        if warmup_steps > lr_decay_epochs[0] * num_steps_each_epoch:
            logging.error(
                "In function train(), parameters should satisfy: warmup_steps <= lr_decay_epochs[0]*num_samples_in_train_dataset",
                exit=False)
            logging.error(
                "See this doc for more information: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/appendix/parameters.md#notice",
                exit=False)
            logging.error(
                "warmup_steps should less than {} or lr_decay_epochs[0] greater than {}, please modify 'lr_decay_epochs' or 'warmup_steps' in train function".
                format(lr_decay_epochs[0] * num_steps_each_epoch, warmup_steps
                       // num_steps_each_epoch))
        boundaries = [b * num_steps_each_epoch for b in lr_decay_epochs]
        values = [(lr_decay_gamma**i) * learning_rate
                  for i in range(len(lr_decay_epochs) + 1)]
        lr_decay = fluid.layers.piecewise_decay(
            boundaries=boundaries, values=values)
        lr_warmup = fluid.layers.linear_lr_warmup(
            learning_rate=lr_decay,
            warmup_steps=warmup_steps,
            start_lr=warmup_start_lr,
            end_lr=learning_rate)
        optimizer = fluid.optimizer.Momentum(
            learning_rate=lr_warmup,
            momentum=0.9,
            regularization=fluid.regularizer.L2DecayRegularizer(5e-04))
        return optimizer

    def train(self,
              num_epochs,
              train_dataset,
              train_batch_size=8,
              eval_dataset=None,
              save_interval_epochs=20,
              log_interval_steps=2,
              save_dir='output',
              pretrain_weights='IMAGENET',
              optimizer=None,
              learning_rate=1.0 / 8000,
              warmup_steps=1000,
              warmup_start_lr=0.0,
              lr_decay_epochs=[213, 240],
              lr_decay_gamma=0.1,
              metric=None,
              use_vdl=False,
              sensitivities_file=None,
              eval_metric_loss=0.05,
              early_stop=False,
              early_stop_patience=5,
              resume_checkpoint=None,
              use_ema=True,
              ema_decay=0.9998):
        """训练。

        Args:
            num_epochs (int): 训练迭代轮数。
            train_dataset (paddlex.datasets): 训练数据读取器。
            train_batch_size (int): 训练数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与显卡
                数量之商为验证数据batch大小。默认值为8。
            eval_dataset (paddlex.datasets): 验证数据读取器。
            save_interval_epochs (int): 模型保存间隔(单位:迭代轮数)。默认为20。
            log_interval_steps (int): 训练日志输出间隔(单位:迭代次数)。默认为10。
            save_dir (str): 模型保存路径。默认值为'output'。
            pretrain_weights (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',
                则自动下载在ImageNet图片数据上预训练的模型权重;若为字符串'COCO',
                则自动下载在COCO数据集上预训练的模型权重;若为None,则不使用预训练模型。默认为'IMAGENET'。
            optimizer (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:
                fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
            learning_rate (float): 默认优化器的学习率。默认为1.0/8000。
            warmup_steps (int):  默认优化器进行warmup过程的步数。默认为1000。
            warmup_start_lr (int): 默认优化器warmup的起始学习率。默认为0.0。
            lr_decay_epochs (list): 默认优化器的学习率衰减轮数。默认为[213, 240]。
            lr_decay_gamma (float): 默认优化器的学习率衰减率。默认为0.1。
            metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
            use_vdl (bool): 是否使用VisualDL进行可视化。默认值为False。
            sensitivities_file (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',
                则自动下载在ImageNet图片数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
            eval_metric_loss (float): 可容忍的精度损失。默认为0.05。
            early_stop (bool): 是否使用提前终止训练策略。默认值为False。
            early_stop_patience (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内
                连续下降或持平,则终止训练。默认值为5。
            resume_checkpoint (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。

        Raises:
            ValueError: 评估类型不在指定列表中。
            ValueError: 模型从inference model进行加载。
        """
        if not self.trainable:
            raise ValueError("Model is not trainable from load_model method.")
        if metric is None:
            if isinstance(train_dataset, paddlex.datasets.CocoDetection):
                metric = 'COCO'
            elif isinstance(train_dataset, paddlex.datasets.VOCDetection) or \
                    isinstance(train_dataset, paddlex.datasets.EasyDataDet):
                metric = 'VOC'
            else:
                raise ValueError(
                    "train_dataset should be datasets.VOCDetection or datasets.COCODetection or datasets.EasyDataDet."
                )
        assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"
        self.metric = metric

        self.labels = train_dataset.labels
        # 构建训练网络
        if optimizer is None:
            # 构建默认的优化策略
            num_steps_each_epoch = train_dataset.num_samples // train_batch_size
            optimizer = self.default_optimizer(
                learning_rate=learning_rate,
                warmup_steps=warmup_steps,
                warmup_start_lr=warmup_start_lr,
                lr_decay_epochs=lr_decay_epochs,
                lr_decay_gamma=lr_decay_gamma,
                num_steps_each_epoch=num_steps_each_epoch)
        self.optimizer = optimizer
        self.use_ema = use_ema
        self.ema_decay = ema_decay

        self.batch_size_per_gpu = int(train_batch_size /
                                      paddlex.env_info['num'])
        if self.use_fine_grained_loss:
            for transform in train_dataset.transforms.transforms:
                if isinstance(transform, paddlex.det.transforms.Resize):
                    self.max_height = transform.target_size
                    self.max_width = transform.target_size
                    break
        if train_dataset.transforms.batch_transforms is None:
            train_dataset.transforms.batch_transforms = list()
        define_random_shape = False
        for bt in train_dataset.transforms.batch_transforms:
            if isinstance(bt, paddlex.det.transforms.BatchRandomShape):
                define_random_shape = True
        if not define_random_shape:
            if isinstance(self.train_random_shapes,
                          (list, tuple)) and len(self.train_random_shapes) > 0:
                train_dataset.transforms.batch_transforms.append(
                    paddlex.det.transforms.BatchRandomShape(
                        random_shapes=self.train_random_shapes))
                if self.use_fine_grained_loss:
                    self.max_height = max(self.max_height,
                                          max(self.train_random_shapes))
                    self.max_width = max(self.max_width,
                                         max(self.train_random_shapes))
        if self.use_fine_grained_loss:
            define_generate_target = False
            for bt in train_dataset.transforms.batch_transforms:
                if isinstance(bt, paddlex.det.transforms.GenerateYoloTarget):
                    define_generate_target = True
            if not define_generate_target:
                train_dataset.transforms.batch_transforms.append(
                    paddlex.det.transforms.GenerateYoloTarget(
                        anchors=self.anchors,
                        anchor_masks=self.anchor_masks,
                        num_classes=self.num_classes,
                        downsample_ratios=[32, 16, 8]))
        # 构建训练、验证、预测网络
        self.build_program()
        # 初始化网络权重
        self.net_initialize(
            startup_prog=fluid.default_startup_program(),
            pretrain_weights=pretrain_weights,
            save_dir=save_dir,
            sensitivities_file=sensitivities_file,
            eval_metric_loss=eval_metric_loss,
            resume_checkpoint=resume_checkpoint)
        # 训练
        self.train_loop(
            num_epochs=num_epochs,
            train_dataset=train_dataset,
            train_batch_size=train_batch_size,
            eval_dataset=eval_dataset,
            save_interval_epochs=save_interval_epochs,
            log_interval_steps=log_interval_steps,
            save_dir=save_dir,
            use_vdl=use_vdl,
            early_stop=early_stop,
            early_stop_patience=early_stop_patience)

    def evaluate(self,
                 eval_dataset,
                 batch_size=1,
                 epoch_id=None,
                 metric=None,
                 return_details=False):
        """评估。

        Args:
            eval_dataset (paddlex.datasets): 验证数据读取器。
            batch_size (int): 验证数据批大小。默认为1。
            epoch_id (int): 当前评估模型所在的训练轮数。
            metric (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,
                根据用户传入的Dataset自动选择,如为VOCDetection,则metric为'VOC';
                如为COCODetection,则metric为'COCO'。
            return_details (bool): 是否返回详细信息。

        Returns:
            tuple (metrics, eval_details) | dict (metrics): 当return_details为True时,返回(metrics, eval_details),
                当return_details为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘,
                分别表示平均准确率平均值在各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。
                eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、
                预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。
        """
        arrange_transforms(
            model_type=self.model_type,
            class_name=self.__class__.__name__,
            transforms=eval_dataset.transforms,
            mode='eval')
        if metric is None:
            if hasattr(self, 'metric') and self.metric is not None:
                metric = self.metric
            else:
                if isinstance(eval_dataset, paddlex.datasets.CocoDetection):
                    metric = 'COCO'
                elif isinstance(eval_dataset, paddlex.datasets.VOCDetection):
                    metric = 'VOC'
                else:
                    raise Exception(
                        "eval_dataset should be datasets.VOCDetection or datasets.COCODetection."
                    )
        assert metric in ['COCO', 'VOC'], "Metric only support 'VOC' or 'COCO'"

        total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
        results = list()

        data_generator = eval_dataset.generator(
            batch_size=batch_size, drop_last=False)
        logging.info(
            "Start to evaluating(total_samples={}, total_steps={})...".format(
                eval_dataset.num_samples, total_steps))
        for step, data in tqdm.tqdm(
                enumerate(data_generator()), total=total_steps):
            images = np.array([d[0] for d in data])
            im_sizes = np.array([d[1] for d in data])
            feed_data = {'image': images, 'im_size': im_sizes}
            with fluid.scope_guard(self.scope):
                outputs = self.exe.run(
                    self.test_prog,
                    feed=[feed_data],
                    fetch_list=list(self.test_outputs.values()),
                    return_numpy=False)
            res = {
                'bbox': (np.array(outputs[0]),
                         outputs[0].recursive_sequence_lengths())
            }
            res_id = [np.array([d[2]]) for d in data]
            res['im_id'] = (res_id, [])
            if metric == 'VOC':
                res_gt_box = [d[3].reshape(-1, 4) for d in data]
                res_gt_label = [d[4].reshape(-1, 1) for d in data]
                res_is_difficult = [d[5].reshape(-1, 1) for d in data]
                res_id = [np.array([d[2]]) for d in data]
                res['gt_box'] = (res_gt_box, [])
                res['gt_label'] = (res_gt_label, [])
                res['is_difficult'] = (res_is_difficult, [])
            results.append(res)
            logging.debug("[EVAL] Epoch={}, Step={}/{}".format(epoch_id, step +
                                                               1, total_steps))
        box_ap_stats, eval_details = eval_results(
            results, metric, eval_dataset.coco_gt, with_background=False)
        evaluate_metrics = OrderedDict(
            zip(['bbox_mmap'
                 if metric == 'COCO' else 'bbox_map'], box_ap_stats))
        if return_details:
            return evaluate_metrics, eval_details
        return evaluate_metrics

    @staticmethod
    def _preprocess(images, transforms, model_type, class_name, thread_num=1):
        arrange_transforms(
            model_type=model_type,
            class_name=class_name,
            transforms=transforms,
            mode='test')
        pool = ThreadPool(thread_num)
        batch_data = pool.map(transforms, images)
        pool.close()
        pool.join()
        padding_batch = generate_minibatch(batch_data)
        im = np.array(
            [data[0] for data in padding_batch],
            dtype=padding_batch[0][0].dtype)
        im_size = np.array([data[1] for data in padding_batch], dtype=np.int32)

        return im, im_size

    @staticmethod
    def _postprocess(res, batch_size, num_classes, labels):
        clsid2catid = dict({i: i for i in range(num_classes)})
        xywh_results = bbox2out([res], clsid2catid)
        preds = [[] for i in range(batch_size)]
        for xywh_res in xywh_results:
            image_id = xywh_res['image_id']
            del xywh_res['image_id']
            xywh_res['category'] = labels[xywh_res['category_id']]
            preds[image_id].append(xywh_res)

        return preds

    def predict(self, img_file, transforms=None):
        """预测。

        Args:
            img_file (str|np.ndarray): 预测图像路径,或者是解码后的排列格式为(H, W, C)且类型为float32且为BGR格式的数组。
            transforms (paddlex.det.transforms): 数据预处理操作。

        Returns:
            list: 预测结果列表,每个预测结果由预测框类别标签、
              预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
              预测框得分组成。
        """
        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")
        if isinstance(img_file, (str, np.ndarray)):
            images = [img_file]
        else:
            raise Exception("img_file must be str/np.ndarray")

        if transforms is None:
            transforms = self.test_transforms
        im, im_size = PPYOLO._preprocess(images, transforms, self.model_type,
                                         self.__class__.__name__)

        with fluid.scope_guard(self.scope):
            result = self.exe.run(self.test_prog,
                                  feed={'image': im,
                                        'im_size': im_size},
                                  fetch_list=list(self.test_outputs.values()),
                                  return_numpy=False,
                                  use_program_cache=True)

        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(list(self.test_outputs.keys()), result)
        }
        res['im_id'] = (np.array(
            [[i] for i in range(len(images))]).astype('int32'), [[]])
        preds = PPYOLO._postprocess(res,
                                    len(images), self.num_classes, self.labels)
        return preds[0]

    def batch_predict(self, img_file_list, transforms=None, thread_num=2):
        """预测。

        Args:
            img_file_list (list|tuple): 对列表(或元组)中的图像同时进行预测,列表中的元素可以是图像路径,也可以是解码后的排列格式为(H,W,C)
                且类型为float32且为BGR格式的数组。
            transforms (paddlex.det.transforms): 数据预处理操作。
            thread_num (int): 并发执行各图像预处理时的线程数。
        Returns:
            list: 每个元素都为列表,表示各图像的预测结果。在各图像的预测结果列表中,每个预测结果由预测框类别标签、
              预测框类别名称、预测框坐标(坐标格式为[xmin, ymin, w, h])、
              预测框得分组成。
        """
        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")

        if not isinstance(img_file_list, (list, tuple)):
            raise Exception("im_file must be list/tuple")

        if transforms is None:
            transforms = self.test_transforms
        im, im_size = PPYOLO._preprocess(img_file_list, transforms,
                                         self.model_type,
                                         self.__class__.__name__, thread_num)

        with fluid.scope_guard(self.scope):
            result = self.exe.run(self.test_prog,
                                  feed={'image': im,
                                        'im_size': im_size},
                                  fetch_list=list(self.test_outputs.values()),
                                  return_numpy=False,
                                  use_program_cache=True)

        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(list(self.test_outputs.keys()), result)
        }
        res['im_id'] = (np.array(
            [[i] for i in range(len(img_file_list))]).astype('int32'), [[]])
        preds = PPYOLO._postprocess(res,
                                    len(img_file_list), self.num_classes,
                                    self.labels)
        return preds