normlime_base.py 8.0 KB
Newer Older
S
sunyanfang01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import numpy as np
import glob

J
jiangjiajun 已提交
19
from paddlex.interpret.as_data_reader.readers import read_image
S
sunyanfang01 已提交
20
import paddlex.utils.logging as logging
S
sunyanfang01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
from . import lime_base
from ._session_preparation import compute_features_for_kmeans, h_pre_models_kmeans


def load_kmeans_model(fname):
    import pickle
    with open(fname, 'rb') as f:
        kmeans_model = pickle.load(f)

    return kmeans_model


def combine_normlime_and_lime(lime_weights, g_weights):
    pred_labels = lime_weights.keys()
    combined_weights = {y: [] for y in pred_labels}

    for y in pred_labels:
        normlized_lime_weights_y = lime_weights[y]
        lime_weights_dict = {tuple_w[0]: tuple_w[1] for tuple_w in normlized_lime_weights_y}

        normlized_g_weight_y = g_weights[y]
        normlime_weights_dict = {tuple_w[0]: tuple_w[1] for tuple_w in normlized_g_weight_y}

        combined_weights[y] = [
            (seg_k, lime_weights_dict[seg_k] * normlime_weights_dict[seg_k])
            for seg_k in lime_weights_dict.keys()
        ]

        combined_weights[y] = sorted(combined_weights[y],
                                     key=lambda x: np.abs(x[1]), reverse=True)

    return combined_weights


def avg_using_superpixels(features, segments):
    one_list = np.zeros((len(np.unique(segments)), features.shape[2]))
    for x in np.unique(segments):
        one_list[x] = np.mean(features[segments == x], axis=0)

    return one_list


def centroid_using_superpixels(features, segments):
    from skimage.measure import regionprops
    regions = regionprops(segments + 1)
    one_list = np.zeros((len(np.unique(segments)), features.shape[2]))
    for i, r in enumerate(regions):
        one_list[i] = features[int(r.centroid[0] + 0.5), int(r.centroid[1] + 0.5), :]
    # print(one_list.shape)
    return one_list


def get_feature_for_kmeans(feature_map, segments):
    from sklearn.preprocessing import normalize
    centroid_feature = centroid_using_superpixels(feature_map, segments)
    avg_feature = avg_using_superpixels(feature_map, segments)
    x = np.concatenate((centroid_feature, avg_feature), axis=-1)
    x = normalize(x)
    return x


def precompute_normlime_weights(list_data_, predict_fn, num_samples=3000, batch_size=50, save_dir='./tmp'):
    # save lime weights and kmeans cluster labels
    precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, save_dir)

    # load precomputed results, compute normlime weights and save.
    fname_list = glob.glob(os.path.join(save_dir, f'lime_weights_s{num_samples}*.npy'))
    return compute_normlime_weights(fname_list, save_dir, num_samples)


S
sunyanfang01 已提交
91
def save_one_lime_predict_and_kmean_labels(lime_all_weights, image_pred_labels, cluster_labels, save_path):
S
sunyanfang01 已提交
92 93 94

    lime_weights = {}
    for label in image_pred_labels:
S
sunyanfang01 已提交
95
        lime_weights[label] = lime_all_weights[label]
S
sunyanfang01 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    for_normlime_weights = {
        'lime_weights': lime_weights,  # a dict: class_label: (seg_label, weight)
        'cluster': cluster_labels  # a list with segments as indices.
    }

    np.save(save_path, for_normlime_weights)


def precompute_lime_weights(list_data_, predict_fn, num_samples, batch_size, save_dir):
    kmeans_model = load_kmeans_model(h_pre_models_kmeans)

    for data_index, each_data_ in enumerate(list_data_):
        if isinstance(each_data_, str):
            save_path = f"lime_weights_s{num_samples}_{each_data_.split('/')[-1].split('.')[0]}.npy"
            save_path = os.path.join(save_dir, save_path)
        else:
            save_path = f"lime_weights_s{num_samples}_{data_index}.npy"
            save_path = os.path.join(save_dir, save_path)

        if os.path.exists(save_path):
S
sunyanfang01 已提交
117
            logging.info(save_path + ' exists, not computing this one.', use_color=True)
S
sunyanfang01 已提交
118 119
            continue

S
sunyanfang01 已提交
120 121
        logging.info('processing'+each_data_ if isinstance(each_data_, str) else data_index + \
              f'+{data_index}/{len(list_data_)}', use_color=True)
S
sunyanfang01 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

        image_show = read_image(each_data_)
        result = predict_fn(image_show)
        result = result[0]  # only one image here.

        if abs(np.sum(result) - 1.0) > 1e-4:
            # softmax
            exp_result = np.exp(result)
            probability = exp_result / np.sum(exp_result)
        else:
            probability = result

        pred_label = np.argsort(probability)[::-1]

        # top_k = argmin(top_n) > threshold
        threshold = 0.05
        top_k = 0
        for l in pred_label:
            if probability[l] < threshold or top_k == 5:
                break
            top_k += 1

        if top_k == 0:
            top_k = 1

        pred_label = pred_label[:top_k]

S
sunyanfang01 已提交
149 150
        algo = lime_base.LimeImageInterpreter()
        interpreter = algo.interpret_instance(image_show[0], predict_fn, pred_label, 0,
S
sunyanfang01 已提交
151 152 153
                                          num_samples=num_samples, batch_size=batch_size)

        cluster_labels = kmeans_model.predict(
S
sunyanfang01 已提交
154
            get_feature_for_kmeans(compute_features_for_kmeans(image_show).transpose((1, 2, 0)), interpreter.segments)
S
sunyanfang01 已提交
155 156
        )
        save_one_lime_predict_and_kmean_labels(
S
sunyanfang01 已提交
157
            interpreter.local_weights, pred_label,
S
sunyanfang01 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            cluster_labels,
            save_path
        )


def compute_normlime_weights(a_list_lime_fnames, save_dir, lime_num_samples):
    normlime_weights_all_labels = {}
    for f in a_list_lime_fnames:
        try:
            lime_weights_and_cluster = np.load(f, allow_pickle=True).item()
            lime_weights = lime_weights_and_cluster['lime_weights']
            cluster = lime_weights_and_cluster['cluster']
        except:
            print('When loading precomputed LIME result, skipping', f)
            continue
        print('Loading precomputed LIME result,', f)

        pred_labels = lime_weights.keys()
        for y in pred_labels:
            normlime_weights = normlime_weights_all_labels.get(y, {})
            w_f_y = [abs(w[1]) for w in lime_weights[y]]
            w_f_y_l1norm = sum(w_f_y)

            for w in lime_weights[y]:
                seg_label = w[0]
                weight = w[1] * w[1] / w_f_y_l1norm
                a = normlime_weights.get(cluster[seg_label], [])
                a.append(weight)
                normlime_weights[cluster[seg_label]] = a

            normlime_weights_all_labels[y] = normlime_weights

    # compute normlime
    for y in normlime_weights_all_labels:
        normlime_weights = normlime_weights_all_labels.get(y, {})
        for k in normlime_weights:
            normlime_weights[k] = sum(normlime_weights[k]) / len(normlime_weights[k])

    # check normlime
    if len(normlime_weights_all_labels.keys()) < max(normlime_weights_all_labels.keys()) + 1:
        print(
            "\n"
            "Warning: !!! \n"
            f"There are at least {max(normlime_weights_all_labels.keys()) + 1} classes, "
            f"but the NormLIME has results of only {len(normlime_weights_all_labels.keys())} classes. \n"
            "It may have cause unstable results in the later computation"
            " but can be improved by computing more test samples."
            "\n"
        )

    n = 0
    f_out = f'normlime_weights_s{lime_num_samples}_samples_{len(a_list_lime_fnames)}-{n}.npy'
    while os.path.exists(
            os.path.join(save_dir, f_out)
    ):
        n += 1
        f_out = f'normlime_weights_s{lime_num_samples}_samples_{len(a_list_lime_fnames)}-{n}.npy'
        continue

    np.save(
        os.path.join(save_dir, f_out),
        normlime_weights_all_labels
    )
    return os.path.join(save_dir, f_out)