interpretation_algorithms.py 16.6 KB
Newer Older
S
sunyanfang01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

S
sunyanfang01 已提交
15 16 17 18 19
import os
import numpy as np
import time

from . import lime_base
S
sunyanfang01 已提交
20 21
from ._session_preparation import paddle_get_fc_weights, compute_features_for_kmeans, h_pre_models_kmeans
from .normlime_base import combine_normlime_and_lime, get_feature_for_kmeans, load_kmeans_model
J
jiangjiajun 已提交
22 23
from paddlex.interpret.as_data_reader.readers import read_image

S
sunyanfang01 已提交
24 25 26 27 28

import cv2


class CAM(object):
S
SunAhong1993 已提交
29
    def __init__(self, predict_fn, label_names):
S
sunyanfang01 已提交
30 31 32 33 34 35 36 37 38 39 40
        """

        Args:
            predict_fn: input: images_show [N, H, W, 3], RGB range(0, 255)
                        output: [
                        logits [N, num_classes],
                        feature map before global average pooling [N, num_channels, h_, w_]
                        ]

        """
        self.predict_fn = predict_fn
S
SunAhong1993 已提交
41
        self.label_names = label_names
S
sunyanfang01 已提交
42

S
sunyanfang01 已提交
43 44
    def preparation_cam(self, data_):
        image_show = read_image(data_)
S
sunyanfang01 已提交
45 46 47 48 49
        result = self.predict_fn(image_show)

        logit = result[0][0]
        if abs(np.sum(logit) - 1.0) > 1e-4:
            # softmax
S
sunyanfang01 已提交
50
            logit = logit - np.max(logit)
S
sunyanfang01 已提交
51 52 53 54 55
            exp_result = np.exp(logit)
            probability = exp_result / np.sum(exp_result)
        else:
            probability = logit

S
sunyanfang01 已提交
56
        # only interpret top 1
S
sunyanfang01 已提交
57 58 59 60 61 62 63 64 65 66
        pred_label = np.argsort(probability)
        pred_label = pred_label[-1:]

        self.predicted_label = pred_label[0]
        self.predicted_probability = probability[pred_label[0]]
        self.image = image_show[0]
        self.labels = pred_label

        fc_weights = paddle_get_fc_weights()
        feature_maps = result[1]
S
SunAhong1993 已提交
67 68 69 70 71
        
        l = pred_label[0]
        ln = l
        if self.label_names is not None:
            ln = self.label_names[l]
S
sunyanfang01 已提交
72

S
SunAhong1993 已提交
73
        print(f'predicted result: {ln} with probability {probability[pred_label[0]]:.3f}')
S
sunyanfang01 已提交
74 75
        return feature_maps, fc_weights

S
sunyanfang01 已提交
76
    def interpret(self, data_, visualization=True, save_to_disk=True, save_outdir=None):
S
sunyanfang01 已提交
77 78 79 80 81 82 83
        feature_maps, fc_weights = self.preparation_cam(data_)
        cam = get_cam(self.image, feature_maps, fc_weights, self.predicted_label)

        if visualization or save_to_disk:
            import matplotlib.pyplot as plt
            from skimage.segmentation import mark_boundaries
            l = self.labels[0]
S
SunAhong1993 已提交
84 85 86
            ln = l 
            if self.label_names is not None:
                ln = self.label_names[l]
S
sunyanfang01 已提交
87 88 89 90 91 92 93 94 95 96 97

            psize = 5
            nrows = 1
            ncols = 2

            plt.close()
            f, axes = plt.subplots(nrows, ncols, figsize=(psize * ncols, psize * nrows))
            for ax in axes.ravel():
                ax.axis("off")
            axes = axes.ravel()
            axes[0].imshow(self.image)
S
SunAhong1993 已提交
98
            axes[0].set_title(f"label {ln}, proba: {self.predicted_probability: .3f}")
S
sunyanfang01 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

            axes[1].imshow(cam)
            axes[1].set_title("CAM")

        if save_to_disk and save_outdir is not None:
            os.makedirs(save_outdir, exist_ok=True)
            save_fig(data_, save_outdir, 'cam')

        if visualization:
            plt.show()

        return


class LIME(object):
S
SunAhong1993 已提交
114
    def __init__(self, predict_fn, label_names, num_samples=3000, batch_size=50):
S
sunyanfang01 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127
        """
        LIME wrapper. See lime_base.py for the detailed LIME implementation.
        Args:
            predict_fn: from image [N, H, W, 3] to logits [N, num_classes], this is necessary for computing LIME.
            num_samples: the number of samples that LIME takes for fitting.
            batch_size: batch size for model inference each time.
        """
        self.num_samples = num_samples
        self.batch_size = batch_size

        self.predict_fn = predict_fn
        self.labels = None
        self.image = None
S
sunyanfang01 已提交
128
        self.lime_interpreter = None
S
SunAhong1993 已提交
129
        self.label_names = label_names
S
sunyanfang01 已提交
130

S
sunyanfang01 已提交
131 132
    def preparation_lime(self, data_):
        image_show = read_image(data_)
S
sunyanfang01 已提交
133 134 135 136 137 138
        result = self.predict_fn(image_show)

        result = result[0]  # only one image here.

        if abs(np.sum(result) - 1.0) > 1e-4:
            # softmax
S
sunyanfang01 已提交
139
            result = result - np.max(result)
S
sunyanfang01 已提交
140 141 142 143 144
            exp_result = np.exp(result)
            probability = exp_result / np.sum(exp_result)
        else:
            probability = result

S
sunyanfang01 已提交
145
        # only interpret top 1
S
sunyanfang01 已提交
146 147 148 149 150 151 152
        pred_label = np.argsort(probability)
        pred_label = pred_label[-1:]

        self.predicted_label = pred_label[0]
        self.predicted_probability = probability[pred_label[0]]
        self.image = image_show[0]
        self.labels = pred_label
S
SunAhong1993 已提交
153 154 155 156 157 158 159
        
        l = pred_label[0]
        ln = l
        if self.label_names is not None:
            ln = self.label_names[l]
            
        print(f'predicted result: {ln} with probability {probability[pred_label[0]]:.3f}')
S
sunyanfang01 已提交
160 161

        end = time.time()
S
sunyanfang01 已提交
162 163 164 165
        algo = lime_base.LimeImageInterpreter()
        interpreter = algo.interpret_instance(self.image, self.predict_fn, self.labels, 0,
                                              num_samples=self.num_samples, batch_size=self.batch_size)
        self.lime_interpreter = interpreter
S
sunyanfang01 已提交
166 167
        print('lime time: ', time.time() - end, 's.')

S
sunyanfang01 已提交
168 169
    def interpret(self, data_, visualization=True, save_to_disk=True, save_outdir=None):
        if self.lime_interpreter is None:
S
sunyanfang01 已提交
170 171 172 173 174 175
            self.preparation_lime(data_)

        if visualization or save_to_disk:
            import matplotlib.pyplot as plt
            from skimage.segmentation import mark_boundaries
            l = self.labels[0]
S
SunAhong1993 已提交
176 177 178
            ln = l 
            if self.label_names is not None:
                ln = self.label_names[l]
S
sunyanfang01 已提交
179 180 181

            psize = 5
            nrows = 2
S
sunyanfang01 已提交
182
            weights_choices = [0.6, 0.7, 0.75, 0.8, 0.85]
S
sunyanfang01 已提交
183 184 185 186 187 188 189 190
            ncols = len(weights_choices)

            plt.close()
            f, axes = plt.subplots(nrows, ncols, figsize=(psize * ncols, psize * nrows))
            for ax in axes.ravel():
                ax.axis("off")
            axes = axes.ravel()
            axes[0].imshow(self.image)
S
SunAhong1993 已提交
191
            axes[0].set_title(f"label {ln}, proba: {self.predicted_probability: .3f}")
S
sunyanfang01 已提交
192

S
sunyanfang01 已提交
193
            axes[1].imshow(mark_boundaries(self.image, self.lime_interpreter.segments))
S
sunyanfang01 已提交
194 195 196 197
            axes[1].set_title("superpixel segmentation")

            # LIME visualization
            for i, w in enumerate(weights_choices):
S
sunyanfang01 已提交
198 199
                num_to_show = auto_choose_num_features_to_show(self.lime_interpreter, l, w)
                temp, mask = self.lime_interpreter.get_image_and_mask(
S
sunyanfang01 已提交
200 201 202
                    l, positive_only=False, hide_rest=False, num_features=num_to_show
                )
                axes[ncols + i].imshow(mark_boundaries(temp, mask))
S
SunAhong1993 已提交
203
                axes[ncols + i].set_title(f"label {ln}, first {num_to_show} superpixels")
S
sunyanfang01 已提交
204 205 206 207 208 209 210 211 212 213 214 215

        if save_to_disk and save_outdir is not None:
            os.makedirs(save_outdir, exist_ok=True)
            save_fig(data_, save_outdir, 'lime', self.num_samples)

        if visualization:
            plt.show()

        return


class NormLIME(object):
S
SunAhong1993 已提交
216
    def __init__(self, predict_fn, label_names, num_samples=3000, batch_size=50,
S
sunyanfang01 已提交
217
                 kmeans_model_for_normlime=None, normlime_weights=None):
S
sunyanfang01 已提交
218 219 220 221 222 223 224 225 226 227
        if kmeans_model_for_normlime is None:
            try:
                self.kmeans_model = load_kmeans_model(h_pre_models_kmeans)
            except:
                raise ValueError("NormLIME needs the KMeans model, where we provided a default one in "
                                 "pre_models/kmeans_model.pkl.")
        else:
            print("Warning: It is *strongly* suggested to use the default KMeans model in pre_models/kmeans_model.pkl. "
                  "Use another one will change the final result.")
            self.kmeans_model = load_kmeans_model(kmeans_model_for_normlime)
S
sunyanfang01 已提交
228 229 230 231

        self.num_samples = num_samples
        self.batch_size = batch_size

S
sunyanfang01 已提交
232 233 234 235 236
        try:
            self.normlime_weights = np.load(normlime_weights, allow_pickle=True).item()
        except:
            self.normlime_weights = None
            print("Warning: not find the correct precomputed Normlime result.")
S
sunyanfang01 已提交
237 238 239 240 241

        self.predict_fn = predict_fn

        self.labels = None
        self.image = None
S
SunAhong1993 已提交
242
        self.label_names = label_names
S
sunyanfang01 已提交
243 244

    def predict_cluster_labels(self, feature_map, segments):
S
sunyanfang01 已提交
245 246 247 248 249 250 251
        X = get_feature_for_kmeans(feature_map, segments)
        try:
            cluster_labels = self.kmeans_model.predict(X)
        except AttributeError:
            from sklearn.metrics import pairwise_distances_argmin_min
            cluster_labels, _ = pairwise_distances_argmin_min(X, self.kmeans_model.cluster_centers_)
        return cluster_labels
S
sunyanfang01 已提交
252 253 254 255 256

    def predict_using_normlime_weights(self, pred_labels, predicted_cluster_labels):
        # global weights
        g_weights = {y: [] for y in pred_labels}
        for y in pred_labels:
S
sunyanfang01 已提交
257
            cluster_weights_y = self.normlime_weights.get(y, {})
S
sunyanfang01 已提交
258 259 260 261 262 263 264 265 266
            g_weights[y] = [
                (i, cluster_weights_y.get(k, 0.0)) for i, k in enumerate(predicted_cluster_labels)
            ]

            g_weights[y] = sorted(g_weights[y],
                                  key=lambda x: np.abs(x[1]), reverse=True)

        return g_weights

S
sunyanfang01 已提交
267
    def preparation_normlime(self, data_):
S
sunyanfang01 已提交
268
        self._lime = LIME(
S
sunyanfang01 已提交
269
            self.predict_fn,
S
SunAhong1993 已提交
270
            self.label_names,
S
sunyanfang01 已提交
271 272 273
            self.num_samples,
            self.batch_size
        )
S
sunyanfang01 已提交
274
        self._lime.preparation_lime(data_)
S
sunyanfang01 已提交
275

S
sunyanfang01 已提交
276
        image_show = read_image(data_)
S
sunyanfang01 已提交
277

S
sunyanfang01 已提交
278 279
        self.predicted_label = self._lime.predicted_label
        self.predicted_probability = self._lime.predicted_probability
S
sunyanfang01 已提交
280
        self.image = image_show[0]
S
sunyanfang01 已提交
281 282 283
        self.labels = self._lime.labels
        # print(f'predicted result: {self.predicted_label} with probability {self.predicted_probability: .3f}')
        print('performing NormLIME operations ...')
S
sunyanfang01 已提交
284 285

        cluster_labels = self.predict_cluster_labels(
S
sunyanfang01 已提交
286
            compute_features_for_kmeans(image_show).transpose((1, 2, 0)), self._lime.lime_interpreter.segments
S
sunyanfang01 已提交
287 288 289 290 291 292
        )

        g_weights = self.predict_using_normlime_weights(self.labels, cluster_labels)

        return g_weights

S
sunyanfang01 已提交
293
    def interpret(self, data_, visualization=True, save_to_disk=True, save_outdir=None):
S
sunyanfang01 已提交
294 295 296 297
        if self.normlime_weights is None:
            raise ValueError("Not find the correct precomputed NormLIME result. \n"
                             "\t Try to call compute_normlime_weights() first or load the correct path.")

S
sunyanfang01 已提交
298
        g_weights = self.preparation_normlime(data_)
S
sunyanfang01 已提交
299
        lime_weights = self._lime.lime_interpreter.local_weights
S
sunyanfang01 已提交
300 301 302 303 304

        if visualization or save_to_disk:
            import matplotlib.pyplot as plt
            from skimage.segmentation import mark_boundaries
            l = self.labels[0]
S
SunAhong1993 已提交
305 306 307
            ln = l
            if self.label_names is not None:
                ln = self.label_names[l]
S
sunyanfang01 已提交
308 309 310

            psize = 5
            nrows = 4
S
sunyanfang01 已提交
311 312
            weights_choices = [0.6, 0.7, 0.75, 0.8, 0.85]
            nums_to_show = []
S
sunyanfang01 已提交
313 314 315 316 317 318 319 320 321
            ncols = len(weights_choices)

            plt.close()
            f, axes = plt.subplots(nrows, ncols, figsize=(psize * ncols, psize * nrows))
            for ax in axes.ravel():
                ax.axis("off")

            axes = axes.ravel()
            axes[0].imshow(self.image)
S
SunAhong1993 已提交
322
            axes[0].set_title(f"label {ln}, proba: {self.predicted_probability: .3f}")
S
sunyanfang01 已提交
323

S
sunyanfang01 已提交
324
            axes[1].imshow(mark_boundaries(self.image, self._lime.lime_interpreter.segments))
S
sunyanfang01 已提交
325 326 327 328
            axes[1].set_title("superpixel segmentation")

            # LIME visualization
            for i, w in enumerate(weights_choices):
S
sunyanfang01 已提交
329
                num_to_show = auto_choose_num_features_to_show(self._lime.lime_interpreter, l, w)
S
sunyanfang01 已提交
330
                nums_to_show.append(num_to_show)
S
sunyanfang01 已提交
331
                temp, mask = self._lime.lime_interpreter.get_image_and_mask(
S
sunyanfang01 已提交
332 333 334
                    l, positive_only=False, hide_rest=False, num_features=num_to_show
                )
                axes[ncols + i].imshow(mark_boundaries(temp, mask))
S
sunyanfang01 已提交
335
                axes[ncols + i].set_title(f"LIME: first {num_to_show} superpixels")
S
sunyanfang01 已提交
336 337

            # NormLIME visualization
S
sunyanfang01 已提交
338
            self._lime.lime_interpreter.local_weights = g_weights
S
sunyanfang01 已提交
339
            for i, num_to_show in enumerate(nums_to_show):
S
sunyanfang01 已提交
340
                temp, mask = self._lime.lime_interpreter.get_image_and_mask(
S
sunyanfang01 已提交
341 342 343
                    l, positive_only=False, hide_rest=False, num_features=num_to_show
                )
                axes[ncols * 2 + i].imshow(mark_boundaries(temp, mask))
S
sunyanfang01 已提交
344
                axes[ncols * 2 + i].set_title(f"NormLIME: first {num_to_show} superpixels")
S
sunyanfang01 已提交
345 346 347

            # NormLIME*LIME visualization
            combined_weights = combine_normlime_and_lime(lime_weights, g_weights)
S
sunyanfang01 已提交
348
            self._lime.lime_interpreter.local_weights = combined_weights
S
sunyanfang01 已提交
349
            for i, num_to_show in enumerate(nums_to_show):
S
sunyanfang01 已提交
350
                temp, mask = self._lime.lime_interpreter.get_image_and_mask(
S
sunyanfang01 已提交
351 352 353
                    l, positive_only=False, hide_rest=False, num_features=num_to_show
                )
                axes[ncols * 3 + i].imshow(mark_boundaries(temp, mask))
S
sunyanfang01 已提交
354
                axes[ncols * 3 + i].set_title(f"Combined: first {num_to_show} superpixels")
S
sunyanfang01 已提交
355

S
sunyanfang01 已提交
356
            self._lime.lime_interpreter.local_weights = lime_weights
S
sunyanfang01 已提交
357 358 359 360 361 362 363 364 365

        if save_to_disk and save_outdir is not None:
            os.makedirs(save_outdir, exist_ok=True)
            save_fig(data_, save_outdir, 'normlime', self.num_samples)

        if visualization:
            plt.show()


S
sunyanfang01 已提交
366 367 368
def auto_choose_num_features_to_show(lime_interpreter, label, percentage_to_show):
    segments = lime_interpreter.segments
    lime_weights = lime_interpreter.local_weights[label]
S
sunyanfang01 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    num_pixels_threshold_in_a_sp = segments.shape[0] * segments.shape[1] // len(np.unique(segments)) // 8

    # l1 norm with filtered weights.
    used_weights = [(tuple_w[0], tuple_w[1]) for i, tuple_w in enumerate(lime_weights) if tuple_w[1] > 0]
    norm = np.sum([tuple_w[1] for i, tuple_w in enumerate(used_weights)])
    normalized_weights = [(tuple_w[0], tuple_w[1] / norm) for i, tuple_w in enumerate(lime_weights)]

    a = 0.0
    n = 0
    for i, tuple_w in enumerate(normalized_weights):
        if tuple_w[1] < 0:
            continue
        if len(np.where(segments == tuple_w[0])[0]) < num_pixels_threshold_in_a_sp:
            continue

        a += tuple_w[1]
        if a > percentage_to_show:
            n = i + 1
            break

S
sunyanfang01 已提交
389 390 391
    if percentage_to_show <= 0.0:
        return 5

S
sunyanfang01 已提交
392
    if n == 0:
S
sunyanfang01 已提交
393
        return auto_choose_num_features_to_show(lime_interpreter, label, percentage_to_show-0.1)
S
sunyanfang01 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

    return n


def get_cam(image_show, feature_maps, fc_weights, label_index, cam_min=None, cam_max=None):
    _, nc, h, w = feature_maps.shape

    cam = feature_maps * fc_weights[:, label_index].reshape(1, nc, 1, 1)
    cam = cam.sum((0, 1))

    if cam_min is None:
        cam_min = np.min(cam)
    if cam_max is None:
        cam_max = np.max(cam)

    cam = cam - cam_min
    cam = cam / cam_max
    cam = np.uint8(255 * cam)
    cam_img = cv2.resize(cam, image_show.shape[0:2], interpolation=cv2.INTER_LINEAR)

    heatmap = cv2.applyColorMap(np.uint8(255 * cam_img), cv2.COLORMAP_JET)
    heatmap = np.float32(heatmap)
    cam = heatmap + np.float32(image_show)
    cam = cam / np.max(cam)

    return cam


def save_fig(data_, save_outdir, algorithm_name, num_samples=3000):
    import matplotlib.pyplot as plt
    if isinstance(data_, str):
        if algorithm_name == 'cam':
            f_out = f"{algorithm_name}_{data_.split('/')[-1]}.png"
        else:
            f_out = f"{algorithm_name}_{data_.split('/')[-1]}_s{num_samples}.png"
        plt.savefig(
            os.path.join(save_outdir, f_out)
        )
    else:
        n = 0
        if algorithm_name == 'cam':
            f_out = f'cam-{n}.png'
        else:
            f_out = f'{algorithm_name}_s{num_samples}-{n}.png'
        while os.path.exists(
                os.path.join(save_outdir, f_out)
        ):
            n += 1
            if algorithm_name == 'cam':
                f_out = f'cam-{n}.png'
            else:
                f_out = f'{algorithm_name}_s{num_samples}-{n}.png'
            continue
        plt.savefig(
            os.path.join(
                save_outdir, f_out
            )
S
SunAhong1993 已提交
451
        )
S
sunyanfang01 已提交
452 453 454
    print('The image of intrepretation result save in {}'.format(os.path.join(
                save_outdir, f_out
            )))