voc.py 8.5 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
import copy
import os.path as osp
import random
import numpy as np
F
FlyingQianMM 已提交
20
from collections import OrderedDict
J
jiangjiajun 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
import xml.etree.ElementTree as ET
import paddlex.utils.logging as logging
from .dataset import Dataset
from .dataset import is_pic
from .dataset import get_encoding


class VOCDetection(Dataset):
    """读取PascalVOC格式的检测数据集,并对样本进行相应的处理。

    Args:
        data_dir (str): 数据集所在的目录路径。
        file_list (str): 描述数据集图片文件和对应标注文件的文件路径(文本内每行路径为相对data_dir的相对路)。
        label_list (str): 描述数据集包含的类别信息文件路径。
        transforms (paddlex.det.transforms): 数据集中每个样本的预处理/增强算子。
        num_workers (int|str): 数据集中样本在预处理过程中的线程或进程数。默认为'auto'。当设为'auto'时,根据
            系统的实际CPU核数设置`num_workers`: 如果CPU核数的一半大于8,则`num_workers`为8,否则为CPU核数的
            一半。
        buffer_size (int): 数据集中样本在预处理过程中队列的缓存长度,以样本数为单位。默认为100。
        parallel_method (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'
            线程和'process'进程两种方式。默认为'thread'(Windows和Mac下会强制使用thread,该参数无效)。
        shuffle (bool): 是否需要对数据集中样本打乱顺序。默认为False。
    """

    def __init__(self,
                 data_dir,
                 file_list,
                 label_list,
                 transforms=None,
                 num_workers='auto',
                 buffer_size=100,
                 parallel_method='process',
                 shuffle=False):
J
jiangjiajun 已提交
54
        from pycocotools.coco import COCO
J
jiangjiajun 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
        super(VOCDetection, self).__init__(
            transforms=transforms,
            num_workers=num_workers,
            buffer_size=buffer_size,
            parallel_method=parallel_method,
            shuffle=shuffle)
        self.file_list = list()
        self.labels = list()
        self._epoch = 0

        annotations = {}
        annotations['images'] = []
        annotations['categories'] = []
        annotations['annotations'] = []

F
FlyingQianMM 已提交
70
        cname2cid = OrderedDict()
J
jiangjiajun 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        label_id = 1
        with open(label_list, 'r', encoding=get_encoding(label_list)) as fr:
            for line in fr.readlines():
                cname2cid[line.strip()] = label_id
                label_id += 1
                self.labels.append(line.strip())
        logging.info("Starting to read file list from dataset...")
        for k, v in cname2cid.items():
            annotations['categories'].append({
                'supercategory': 'component',
                'id': v,
                'name': k
            })
        ct = 0
        ann_ct = 0
        with open(file_list, 'r', encoding=get_encoding(file_list)) as fr:
            while True:
                line = fr.readline()
                if not line:
                    break
                img_file, xml_file = [osp.join(data_dir, x) \
                        for x in line.strip().split()[:2]]
                if not is_pic(img_file):
                    continue
                if not osp.isfile(xml_file):
                    continue
                if not osp.exists(img_file):
                    raise IOError(
                        'The image file {} is not exist!'.format(img_file))
                tree = ET.parse(xml_file)
                if tree.find('id') is None:
                    im_id = np.array([ct])
                else:
                    ct = int(tree.find('id').text)
                    im_id = np.array([int(tree.find('id').text)])

                objs = tree.findall('object')
                im_w = float(tree.find('size').find('width').text)
                im_h = float(tree.find('size').find('height').text)
                gt_bbox = np.zeros((len(objs), 4), dtype=np.float32)
                gt_class = np.zeros((len(objs), 1), dtype=np.int32)
                gt_score = np.ones((len(objs), 1), dtype=np.float32)
                is_crowd = np.zeros((len(objs), 1), dtype=np.int32)
                difficult = np.zeros((len(objs), 1), dtype=np.int32)
                for i, obj in enumerate(objs):
                    cname = obj.find('name').text
                    gt_class[i][0] = cname2cid[cname]
                    _difficult = int(obj.find('difficult').text)
                    x1 = float(obj.find('bndbox').find('xmin').text)
                    y1 = float(obj.find('bndbox').find('ymin').text)
                    x2 = float(obj.find('bndbox').find('xmax').text)
                    y2 = float(obj.find('bndbox').find('ymax').text)
                    x1 = max(0, x1)
                    y1 = max(0, y1)
                    x2 = min(im_w - 1, x2)
                    y2 = min(im_h - 1, y2)
                    gt_bbox[i] = [x1, y1, x2, y2]
                    is_crowd[i][0] = 0
                    difficult[i][0] = _difficult
                    annotations['annotations'].append({
                        'iscrowd':
                        0,
                        'image_id':
                        int(im_id[0]),
                        'bbox': [x1, y1, x2 - x1 + 1, y2 - y1 + 1],
                        'area':
                        float((x2 - x1 + 1) * (y2 - y1 + 1)),
                        'category_id':
                        cname2cid[cname],
                        'id':
                        ann_ct,
                        'difficult':
                        _difficult
                    })
                    ann_ct += 1

                im_info = {
                    'im_id': im_id,
                    'origin_shape': np.array([im_h, im_w]).astype('int32'),
                }
                label_info = {
                    'is_crowd': is_crowd,
                    'gt_class': gt_class,
                    'gt_bbox': gt_bbox,
                    'gt_score': gt_score,
                    'gt_poly': [],
                    'difficult': difficult
                }
                voc_rec = (im_info, label_info)
                if len(objs) != 0:
                    self.file_list.append([img_file, voc_rec])
                    ct += 1
                    annotations['images'].append({
                        'height':
                        im_h,
                        'width':
                        im_w,
                        'id':
                        int(im_id[0]),
                        'file_name':
                        osp.split(img_file)[1]
                    })

        if not len(self.file_list) > 0:
            raise Exception('not found any voc record in %s' % (file_list))
        logging.info("{} samples in file {}".format(
            len(self.file_list), file_list))
        self.num_samples = len(self.file_list)
        self.coco_gt = COCO()
        self.coco_gt.dataset = annotations
        self.coco_gt.createIndex()

    def iterator(self):
        self._epoch += 1
        self._pos = 0
        files = copy.deepcopy(self.file_list)
        if self.shuffle:
            random.shuffle(files)
        files = files[:self.num_samples]
        self.num_samples = len(files)
        for f in files:
            records = f[1]
            im_info = copy.deepcopy(records[0])
            label_info = copy.deepcopy(records[1])
            im_info['epoch'] = self._epoch
            if self.num_samples > 1:
                mix_idx = random.randint(1, self.num_samples - 1)
                mix_pos = (mix_idx + self._pos) % self.num_samples
            else:
                mix_pos = 0
            im_info['mixup'] = [
                files[mix_pos][0],
                copy.deepcopy(files[mix_pos][1][0]),
                copy.deepcopy(files[mix_pos][1][1])
            ]
            self._pos += 1
            sample = [f[0], im_info, label_info]
            yield sample