dataset.py 8.9 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from threading import Thread
import multiprocessing
import collections
import numpy as np
import six
import sys
import copy
import random
import platform
import chardet
import paddlex.utils.logging as logging


class EndSignal():
    pass


def is_pic(img_name):
    valid_suffix = ['JPEG', 'jpeg', 'JPG', 'jpg', 'BMP', 'bmp', 'PNG', 'png']
    suffix = img_name.split('.')[-1]
    if suffix not in valid_suffix:
        return False
    return True


def is_valid(sample):
    if sample is None:
        return False
    if isinstance(sample, tuple):
        for s in sample:
            if s is None:
                return False
            elif isinstance(s, np.ndarray) and s.size == 0:
                return False
            elif isinstance(s, collections.Sequence) and len(s) == 0:
                return False
    return True


def get_encoding(path):
    f = open(path, 'rb')
    data = f.read()
    file_encoding = chardet.detect(data).get('encoding')
    return file_encoding


def multithread_reader(mapper,
                       reader,
                       num_workers=4,
                       buffer_size=1024,
                       batch_size=8,
                       drop_last=True):
    from queue import Queue
    end = EndSignal()

    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, EndSignal):
            if len(sample) == 2:
                r = mapper(sample[0], sample[1])
            elif len(sample) == 3:
                r = mapper(sample[0], sample[1], sample[2])
            else:
                raise Exception('The sample\'s length must be 2 or 3.')
            if is_valid(r):
                out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)

    def xreader():
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
        # start a read worker in a thread
        target = read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = handle_worker
        args = (in_queue, out_queue, mapper)
        workers = []
        for i in range(num_workers):
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

        batch_data = []
        sample = out_queue.get()
        while not isinstance(sample, EndSignal):
            batch_data.append(sample)
            if len(batch_data) == batch_size:
                batch_data = GenerateMiniBatch(batch_data)
                yield batch_data
                batch_data = []
            sample = out_queue.get()
        finish = 1
        while finish < num_workers:
            sample = out_queue.get()
            if isinstance(sample, EndSignal):
                finish += 1
            else:
                batch_data.append(sample)
                if len(batch_data) == batch_size:
                    batch_data = GenerateMiniBatch(batch_data)
                    yield batch_data
                    batch_data = []
        if not drop_last and len(batch_data) != 0:
            batch_data = GenerateMiniBatch(batch_data)
            yield batch_data
            batch_data = []

    return xreader


def multiprocess_reader(mapper,
                        reader,
                        num_workers=4,
                        buffer_size=1024,
                        batch_size=8,
                        drop_last=True):
    from .shared_queue import SharedQueue as Queue

    def _read_into_queue(samples, mapper, queue):
        end = EndSignal()
        try:
            for sample in samples:
                if sample is None:
                    raise ValueError("sample has None")
                if len(sample) == 2:
                    result = mapper(sample[0], sample[1])
                elif len(sample) == 3:
                    result = mapper(sample[0], sample[1], sample[2])
                else:
                    raise Exception('The sample\'s length must be 2 or 3.')
                if is_valid(result):
                    queue.put(result)
            queue.put(end)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())

    def queue_reader():
        queue = Queue(buffer_size, memsize=3 * 1024**3)
        total_samples = [[] for i in range(num_workers)]
        for i, sample in enumerate(reader()):
            index = i % num_workers
            total_samples[index].append(sample)
        for i in range(num_workers):
            p = multiprocessing.Process(
                target=_read_into_queue,
                args=(total_samples[i], mapper, queue))
            p.start()

        finish_num = 0
        batch_data = list()
        while finish_num < num_workers:
            sample = queue.get()
            if isinstance(sample, EndSignal):
                finish_num += 1
            elif sample == "":
                raise ValueError("multiprocess reader raises an exception")
            else:
                batch_data.append(sample)
                if len(batch_data) == batch_size:
                    batch_data = GenerateMiniBatch(batch_data)
                    yield batch_data
                    batch_data = []
        if len(batch_data) != 0 and not drop_last:
            batch_data = GenerateMiniBatch(batch_data)
            yield batch_data
            batch_data = []

    return queue_reader


def GenerateMiniBatch(batch_data):
    if len(batch_data) == 1:
        return batch_data
    width = [data[0].shape[2] for data in batch_data]
    height = [data[0].shape[1] for data in batch_data]
    if len(set(width)) == 1 and len(set(height)) == 1:
        return batch_data
    max_shape = np.array([data[0].shape for data in batch_data]).max(axis=0)
    padding_batch = []
    for data in batch_data:
        im_c, im_h, im_w = data[0].shape[:]
J
jiangjiajun 已提交
212 213
        padding_im = np.zeros(
            (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
J
jiangjiajun 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        padding_im[:, :im_h, :im_w] = data[0]
        padding_batch.append((padding_im, ) + data[1:])
    return padding_batch


class Dataset:
    def __init__(self,
                 transforms=None,
                 num_workers='auto',
                 buffer_size=100,
                 parallel_method='process',
                 shuffle=False):
        if num_workers == 'auto':
            import multiprocessing as mp
            num_workers = mp.cpu_count() // 2 if mp.cpu_count() // 2 < 8 else 8
J
jiangjiajun 已提交
229 230
        if platform.platform().startswith("Darwin") or platform.platform(
        ).startswith("Windows"):
J
jiangjiajun 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
            parallel_method = 'thread'
        if transforms is None:
            raise Exception("transform should be defined.")
        self.transforms = transforms
        self.num_workers = num_workers
        self.buffer_size = buffer_size
        self.parallel_method = parallel_method
        self.shuffle = shuffle

    def generator(self, batch_size=1, drop_last=True):
        self.batch_size = batch_size
        parallel_reader = multithread_reader
        if self.parallel_method == "process":
            if platform.platform().startswith("Windows"):
                logging.debug(
                    "multiprocess_reader is not supported in Windows platform, force to use multithread_reader."
                )
            else:
                parallel_reader = multiprocess_reader
        return parallel_reader(
            self.transforms,
            self.iterator,
            num_workers=self.num_workers,
            buffer_size=self.buffer_size,
            batch_size=batch_size,
            drop_last=drop_last)
J
jiangjiajun 已提交
257 258 259 260 261 262 263 264

    def set_num_samples(self, num_samples):
        if num_samples > len(self.file_list):
            logging.warning(
                "You want set num_samples to {}, but your dataset only has {} samples, so we will keep your dataset num_samples as {}"
                .format(num_samples, len(self.file_list), len(self.file_list)))
            num_samples = len(self.file_list)
        self.num_samples = num_samples