prune_config.py 15.5 KB
Newer Older
M
mamingjie-China 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
J
jiangjiajun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os.path as osp
import paddle.fluid as fluid
J
jiangjiajun 已提交
18
#import paddlehub as hub
J
jiangjiajun 已提交
19 20 21
import paddlex

sensitivities_data = {
S
sunyanfang01 已提交
22 23
    'AlexNet':
    'https://bj.bcebos.com/paddlex/slim_prune/alexnet_sensitivities.data',
J
jiangjiajun 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    'ResNet18':
    'https://bj.bcebos.com/paddlex/slim_prune/resnet18.sensitivities',
    'ResNet34':
    'https://bj.bcebos.com/paddlex/slim_prune/resnet34.sensitivities',
    'ResNet50':
    'https://bj.bcebos.com/paddlex/slim_prune/resnet50.sensitivities',
    'ResNet101':
    'https://bj.bcebos.com/paddlex/slim_prune/resnet101.sensitivities',
    'ResNet50_vd':
    'https://bj.bcebos.com/paddlex/slim_prune/resnet50vd.sensitivities',
    'ResNet101_vd':
    'https://bj.bcebos.com/paddlex/slim_prune/resnet101vd.sensitivities',
    'DarkNet53':
    'https://bj.bcebos.com/paddlex/slim_prune/darknet53.sensitivities',
    'MobileNetV1':
    'https://bj.bcebos.com/paddlex/slim_prune/mobilenetv1.sensitivities',
    'MobileNetV2':
    'https://bj.bcebos.com/paddlex/slim_prune/mobilenetv2.sensitivities',
    'MobileNetV3_large':
    'https://bj.bcebos.com/paddlex/slim_prune/mobilenetv3_large.sensitivities',
    'MobileNetV3_small':
    'https://bj.bcebos.com/paddlex/slim_prune/mobilenetv3_small.sensitivities',
S
sunyanfang01 已提交
46 47 48 49
    'MobileNetV3_large_ssld':
    'https://bj.bcebos.com/paddlex/slim_prune/mobilenetv3_large_ssld_sensitivities.data',
    'MobileNetV3_small_ssld':
    'https://bj.bcebos.com/paddlex/slim_prune/mobilenetv3_small_ssld_sensitivities.data',
J
jiangjiajun 已提交
50 51 52 53 54 55 56 57 58 59
    'DenseNet121':
    'https://bj.bcebos.com/paddlex/slim_prune/densenet121.sensitivities',
    'DenseNet161':
    'https://bj.bcebos.com/paddlex/slim_prune/densenet161.sensitivities',
    'DenseNet201':
    'https://bj.bcebos.com/paddlex/slim_prune/densenet201.sensitivities',
    'Xception41':
    'https://bj.bcebos.com/paddlex/slim_prune/xception41.sensitivities',
    'Xception65':
    'https://bj.bcebos.com/paddlex/slim_prune/xception65.sensitivities',
S
sunyanfang01 已提交
60 61
    'ShuffleNetV2':
    'https://bj.bcebos.com/paddlex/slim_prune/shufflenetv2_sensitivities.data',
J
jiangjiajun 已提交
62 63 64 65 66 67 68 69
    'YOLOv3_MobileNetV1':
    'https://bj.bcebos.com/paddlex/slim_prune/yolov3_mobilenetv1.sensitivities',
    'YOLOv3_MobileNetV3_large':
    'https://bj.bcebos.com/paddlex/slim_prune/yolov3_mobilenetv3.sensitivities',
    'YOLOv3_DarkNet53':
    'https://bj.bcebos.com/paddlex/slim_prune/yolov3_darknet53.sensitivities',
    'YOLOv3_ResNet34':
    'https://bj.bcebos.com/paddlex/slim_prune/yolov3_resnet34.sensitivities',
70
    'UNet': 'https://bj.bcebos.com/paddlex/slim_prune/unet.sensitivities',
J
jiangjiajun 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    'DeepLabv3p_MobileNetV2_x0.25':
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_mobilenetv2_x0.25_no_aspp_decoder.sensitivities',
    'DeepLabv3p_MobileNetV2_x0.5':
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_mobilenetv2_x0.5_no_aspp_decoder.sensitivities',
    'DeepLabv3p_MobileNetV2_x1.0':
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_mobilenetv2_x1.0_no_aspp_decoder.sensitivities',
    'DeepLabv3p_MobileNetV2_x1.5':
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_mobilenetv2_x1.5_no_aspp_decoder.sensitivities',
    'DeepLabv3p_MobileNetV2_x2.0':
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_mobilenetv2_x2.0_no_aspp_decoder.sensitivities',
    'DeepLabv3p_MobileNetV2_x0.25_aspp_decoder':
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_mobilenetv2_x0.25_with_aspp_decoder.sensitivities',
    'DeepLabv3p_MobileNetV2_x0.5_aspp_decoder':
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_mobilenetv2_x0.5_with_aspp_decoder.sensitivities',
    'DeepLabv3p_MobileNetV2_x1.0_aspp_decoder':
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_mobilenetv2_x1.0_with_aspp_decoder.sensitivities',
    'DeepLabv3p_MobileNetV2_x1.5_aspp_decoder':
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_mobilenetv2_x1.5_with_aspp_decoder.sensitivities',
    'DeepLabv3p_MobileNetV2_x2.0_aspp_decoder':
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_mobilenetv2_x2.0_with_aspp_decoder.sensitivities',
    'DeepLabv3p_Xception65_aspp_decoder':
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_xception65_with_aspp_decoder.sensitivities',
    'DeepLabv3p_Xception41_aspp_decoder':
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    'https://bj.bcebos.com/paddlex/slim_prune/deeplab_xception41_with_aspp_decoder.sensitivities',
    'HRNet_W18_Seg':
    'https://bj.bcebos.com/paddlex/slim_prune/hrnet_w18.sensitivities',
    'HRNet_W30_Seg':
    'https://bj.bcebos.com/paddlex/slim_prune/hrnet_w30.sensitivities',
    'HRNet_W32_Seg':
    'https://bj.bcebos.com/paddlex/slim_prune/hrnet_w32.sensitivities',
    'HRNet_W40_Seg':
    'https://bj.bcebos.com/paddlex/slim_prune/hrnet_w40.sensitivities',
    'HRNet_W44_Seg':
    'https://bj.bcebos.com/paddlex/slim_prune/hrnet_w44.sensitivities',
    'HRNet_W48_Seg':
    'https://bj.bcebos.com/paddlex/slim_prune/hrnet_w48.sensitivities',
    'HRNet_W64_Seg':
    'https://bj.bcebos.com/paddlex/slim_prune/hrnet_w64.sensitivities',
    'FastSCNN':
    'https://bj.bcebos.com/paddlex/slim_prune/fast_scnn.sensitivities'
J
jiangjiajun 已提交
111 112 113 114 115 116 117 118 119 120
}


def get_sensitivities(flag, model, save_dir):
    model_name = model.__class__.__name__
    model_type = model_name
    if hasattr(model, 'backbone'):
        model_type = model_name + '_' + model.backbone
    if model_type.startswith('DeepLabv3p_Xception'):
        model_type = model_type + '_' + 'aspp' + '_' + 'decoder'
121 122
    elif hasattr(model, 'encoder_with_aspp') or hasattr(model,
                                                        'enable_decoder'):
J
jiangjiajun 已提交
123
        model_type = model_type + '_' + 'aspp' + '_' + 'decoder'
124 125
    if model_type.startswith('HRNet') and model.model_type == 'segmenter':
        model_type = '{}_W{}_Seg'.format(model_type, model.width)
J
jiangjiajun 已提交
126 127 128 129 130 131 132
    if osp.isfile(flag):
        return flag
    elif flag == 'DEFAULT':
        assert model_type in sensitivities_data, "There is not sensitivities data file for {}, you may need to calculate it by your self.".format(
            model_type)
        url = sensitivities_data[model_type]
        fname = osp.split(url)[-1]
J
jiangjiajun 已提交
133
        paddlex.utils.download(url, path=save_dir)
J
jiangjiajun 已提交
134
        return osp.join(save_dir, fname)
J
jiangjiajun 已提交
135 136 137 138 139 140 141 142 143 144

#        try:
#            hub.download(fname, save_path=save_dir)
#        except Exception as e:
#            if isinstance(e, hub.ResourceNotFoundError):
#                raise Exception(
#                    "Resource for model {}(key='{}') not found".format(
#                        model_type, fname))
#            elif isinstance(e, hub.ServerConnectionError):
#                raise Exception(
145
#                    "Cannot get reource for model {}(key='{}'), please check your internet connection"
J
jiangjiajun 已提交
146 147 148 149 150 151
#                    .format(model_type, fname))
#            else:
#                raise Exception(
#                    "Unexpected error, please make sure paddlehub >= 1.6.2 {}".
#                    format(str(e)))
#        return osp.join(save_dir, fname)
J
jiangjiajun 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    else:
        raise Exception(
            "sensitivities need to be defined as directory path or `DEFAULT`(download sensitivities automatically)."
        )


def get_prune_params(model):
    prune_names = []
    model_type = model.__class__.__name__
    if model_type == 'BaseClassifier':
        model_type = model.model_name
    if hasattr(model, 'backbone'):
        backbone = model.backbone
        model_type += ('_' + backbone)
    program = model.test_prog
    if model_type.startswith('ResNet') or \
            model_type.startswith('DenseNet') or \
S
sunyanfang01 已提交
169
            model_type.startswith('DarkNet') or \
S
sunyanfang01 已提交
170 171
            model_type.startswith('AlexNet') or \
            model_type.startswith('ShuffleNetV2'):
J
jiangjiajun 已提交
172 173
        for block in program.blocks:
            for param in block.all_parameters():
J
jiangjiajun 已提交
174 175 176 177 178 179 180 181
                pd_var = model.scope.find_var(param.name)
                try:
                    pd_param = pd_var.get_tensor()
                    if len(np.array(pd_param).shape) == 4:
                        prune_names.append(param.name)
                except Exception as e:
                    print("None Tensor Name: ", param.name)
                    print("Error message: {}".format(e))
S
sunyanfang01 已提交
182 183
        if model_type == 'AlexNet':
            prune_names.remove('conv5_weights')
S
sunyanfang01 已提交
184
        if model_type == 'ShuffleNetV2':
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            not_prune_names = [
                'stage_2_1_conv5_weights',
                'stage_2_1_conv3_weights',
                'stage_2_2_conv3_weights',
                'stage_2_3_conv3_weights',
                'stage_2_4_conv3_weights',
                'stage_3_1_conv5_weights',
                'stage_3_1_conv3_weights',
                'stage_3_2_conv3_weights',
                'stage_3_3_conv3_weights',
                'stage_3_4_conv3_weights',
                'stage_3_5_conv3_weights',
                'stage_3_6_conv3_weights',
                'stage_3_7_conv3_weights',
                'stage_3_8_conv3_weights',
                'stage_4_1_conv5_weights',
                'stage_4_1_conv3_weights',
                'stage_4_2_conv3_weights',
                'stage_4_3_conv3_weights',
                'stage_4_4_conv3_weights',
            ]
S
sunyanfang01 已提交
206
            for name in not_prune_names:
207
                prune_names.remove(name)
J
jiangjiajun 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220
    elif model_type == "MobileNetV1":
        prune_names.append("conv1_weights")
        for param in program.global_block().all_parameters():
            if "_sep_weights" in param.name:
                prune_names.append(param.name)
    elif model_type == "MobileNetV2":
        for param in program.global_block().all_parameters():
            if 'weight' not in param.name \
                    or 'dwise' in param.name \
                    or 'fc' in param.name :
                continue
            prune_names.append(param.name)
    elif model_type.startswith("MobileNetV3"):
S
sunyanfang01 已提交
221
        if model_type.startswith('MobileNetV3_small'):
J
jiangjiajun 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            expand_prune_id = [3, 4]
        else:
            expand_prune_id = [2, 3, 4, 8, 9, 11]
        for param in program.global_block().all_parameters():
            if ('expand_weights' in param.name and \
                    int(param.name.split('_')[0][4:]) in expand_prune_id)\
                    or 'linear_weights' in param.name \
                    or 'se_1_weights' in param.name:
                prune_names.append(param.name)
    elif model_type.startswith('Xception') or \
            model_type.startswith('DeepLabv3p_Xception'):
        params_not_prune = [
            'weights',
            'xception_{}/exit_flow/block2/separable_conv3/pointwise/weights'.
            format(model_type[-2:]), 'encoder/concat/weights',
            'decoder/concat/weights'
        ]
        for param in program.global_block().all_parameters():
            if 'weight' not in param.name \
                    or 'dwise' in param.name \
                    or 'depthwise' in param.name \
                    or 'logit' in param.name:
                continue
            if param.name in params_not_prune:
                continue
            prune_names.append(param.name)
    elif model_type.startswith('YOLOv3'):
        for block in program.blocks:
            for param in block.all_parameters():
                if 'weights' in param.name and 'yolo_block' in param.name:
                    prune_names.append(param.name)
    elif model_type.startswith('UNet'):
        for param in program.global_block().all_parameters():
            if 'weight' not in param.name:
                continue
            if 'logit' in param.name:
                continue
            prune_names.append(param.name)
        params_not_prune = [
            'encode/block4/down/conv1/weights',
            'encode/block3/down/conv1/weights',
            'encode/block2/down/conv1/weights', 'encode/block1/conv1/weights'
        ]
        for i in params_not_prune:
            if i in prune_names:
                prune_names.remove(i)
268 269

    elif model_type.startswith('HRNet') and model.model_type == 'segmenter':
C
chenguowei01 已提交
270 271 272 273
        for param in program.global_block().all_parameters():
            if 'weight' not in param.name:
                continue
            prune_names.append(param.name)
274
        params_not_prune = ['conv-1_weights']
C
chenguowei01 已提交
275 276 277
        for i in params_not_prune:
            if i in prune_names:
                prune_names.remove(i)
278

C
chenguowei01 已提交
279 280 281 282 283 284 285
    elif model_type.startswith('FastSCNN'):
        for param in program.global_block().all_parameters():
            if 'weight' not in param.name:
                continue
            if 'dwise' in param.name or 'depthwise' in param.name or 'logit' in param.name:
                continue
            prune_names.append(param.name)
286
        params_not_prune = ['classifier/weights']
C
chenguowei01 已提交
287 288 289
        for i in params_not_prune:
            if i in prune_names:
                prune_names.remove(i)
J
jiangjiajun 已提交
290 291

    elif model_type.startswith('DeepLabv3p'):
J
jiangjiajun 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        if model_type.lower() == "deeplabv3p_mobilenetv3_large_x1_0_ssld":
            params_not_prune = [
                'last_1x1_conv_weights', 'conv14_se_2_weights',
                'conv16_depthwise_weights', 'conv13_depthwise_weights',
                'conv15_se_2_weights', 'conv2_depthwise_weights',
                'conv6_depthwise_weights', 'conv8_depthwise_weights',
                'fc_weights', 'conv3_depthwise_weights', 'conv7_se_2_weights',
                'conv16_expand_weights', 'conv16_se_2_weights',
                'conv10_depthwise_weights', 'conv11_depthwise_weights',
                'conv15_expand_weights', 'conv5_expand_weights',
                'conv15_depthwise_weights', 'conv14_depthwise_weights',
                'conv12_se_2_weights', 'conv1_weights',
                'conv13_expand_weights', 'conv_last_weights',
                'conv12_depthwise_weights', 'conv13_se_2_weights',
                'conv12_expand_weights', 'conv5_depthwise_weights',
                'conv6_se_2_weights', 'conv10_expand_weights',
                'conv9_depthwise_weights', 'conv6_expand_weights',
                'conv5_se_2_weights', 'conv14_expand_weights',
                'conv4_depthwise_weights', 'conv7_expand_weights',
                'conv7_depthwise_weights'
            ]
J
jiangjiajun 已提交
313 314 315 316 317
        for param in program.global_block().all_parameters():
            if 'weight' not in param.name:
                continue
            if 'dwise' in param.name or 'depthwise' in param.name or 'logit' in param.name:
                continue
J
jiangjiajun 已提交
318 319 320
            if model_type.lower() == "deeplabv3p_mobilenetv3_large_x1_0_ssld":
                if param.name in params_not_prune:
                    continue
J
jiangjiajun 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
            prune_names.append(param.name)
        params_not_prune = [
            'xception_{}/exit_flow/block2/separable_conv3/pointwise/weights'.
            format(model_type[-2:]), 'encoder/concat/weights',
            'decoder/concat/weights'
        ]
        if model.encoder_with_aspp == True:
            params_not_prune.append(
                'xception_{}/exit_flow/block2/separable_conv3/pointwise/weights'
                .format(model_type[-2:]))
            params_not_prune.append('conv8_1_linear_weights')
        for i in params_not_prune:
            if i in prune_names:
                prune_names.remove(i)
    else:
        raise Exception('The {} is not implement yet!'.format(model_type))
    return prune_names