analyse.py 17.5 KB
Newer Older
F
FlyingQianMM 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
# coding: utf8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import os
import os.path as osp
import sys
import argparse
from PIL import Image
from tqdm import tqdm
import imghdr
import logging
import pickle
import gdal


def parse_args():
    parser = argparse.ArgumentParser(
        description='Data analyse and data check before training.')
    parser.add_argument(
        '--data_dir',
        dest='data_dir',
        help='Dataset directory',
        default=None,
        type=str)
    parser.add_argument(
        '--num_classes',
        dest='num_classes',
        help='Number of classes',
        default=None,
        type=int)
    parser.add_argument(
        '--separator',
        dest='separator',
        help='file list separator',
        default=" ",
        type=str)
    parser.add_argument(
        '--ignore_index',
        dest='ignore_index',
        help='Ignored class index',
        default=255,
        type=int)
    if len(sys.argv) == 1:
        parser.print_help()
        sys.exit(1)
    return parser.parse_args()


def read_img(img_path):
    img_format = imghdr.what(img_path)
    name, ext = osp.splitext(img_path)
    if img_format == 'tiff' or ext == '.img':
        dataset = gdal.Open(img_path)
        if dataset == None:
            raise Exception('Can not open', img_path)
        im_data = dataset.ReadAsArray()
        return im_data.transpose((1, 2, 0))
    elif ext == '.npy':
        return np.load(img_path)
    else:
        raise Exception('Not support {} image format!'.format(ext))


def img_pixel_statistics(img, img_value_num, img_min_value, img_max_value):
    channel = img.shape[2]
    means = np.zeros(channel)
    stds = np.zeros(channel)
    for k in range(channel):
        img_k = img[:, :, k]

        # count mean, std
        means[k] = np.mean(img_k)
        stds[k] = np.std(img_k)

        # count min, max
        min_value = np.min(img_k)
        max_value = np.max(img_k)
        if img_max_value[k] < max_value:
            img_max_value[k] = max_value
        if img_min_value[k] > min_value:
            img_min_value[k] = min_value

        # count the distribution of image value, value number
        unique, counts = np.unique(img_k, return_counts=True)
        add_num = []
        max_unique = np.max(unique)
        add_len = max_unique - len(img_value_num[k]) + 1
        if add_len > 0:
            img_value_num[k] += ([0] * add_len)
        for i in range(len(unique)):
            value = unique[i]
            img_value_num[k][value] += counts[i]

        img_value_num[k] += add_num
    return means, stds, img_min_value, img_max_value, img_value_num


def data_distribution_statistics(data_dir, img_value_num, logger):
    """count the distribution of image value, value number
    """
    logger.info(
        "\n-----------------------------\nThe whole dataset statistics...")

    if not img_value_num:
        return
    logger.info("\nImage pixel statistics:")
    total_ratio = []
    [total_ratio.append([]) for i in range(len(img_value_num))]
    for k in range(len(img_value_num)):
        total_num = sum(img_value_num[k])
        total_ratio[k] = [i / total_num for i in img_value_num[k]]
        total_ratio[k] = np.around(total_ratio[k], decimals=4)
    with open(os.path.join(data_dir, 'img_pixel_statistics.pkl'), 'wb') as f:
        pickle.dump([total_ratio, img_value_num], f)


def data_range_statistics(img_min_value, img_max_value, logger):
    """print min value, max value
    """
    logger.info("value range: \nimg_min_value = {} \nimg_max_value = {}".
                format(img_min_value, img_max_value))


def cal_normalize_coefficient(total_means, total_stds, total_img_num, logger):
    """count mean, std
    """
    total_means = total_means / total_img_num
    total_stds = total_stds / total_img_num
    logger.info("\nCount the channel-by-channel mean and std of the image:\n"
                "mean = {}\nstd = {}".format(total_means, total_stds))


def error_print(str):
    return "".join(["\nNOT PASS ", str])


def correct_print(str):
    return "".join(["\nPASS ", str])


def pil_imread(file_path):
    """read pseudo-color label"""
    im = Image.open(file_path)
    return np.asarray(im)


def get_img_shape_range(img, max_width, max_height, min_width, min_height):
    """获取图片最大和最小宽高"""
    img_shape = img.shape
    height, width = img_shape[0], img_shape[1]
    max_height = max(height, max_height)
    max_width = max(width, max_width)
    min_height = min(height, min_height)
    min_width = min(width, min_width)
    return max_width, max_height, min_width, min_height


def get_img_channel_num(img, img_channels):
    """获取图像的通道数"""
    img_shape = img.shape
    if img_shape[-1] not in img_channels:
        img_channels.append(img_shape[-1])
    return img_channels


def is_label_single_channel(label):
    """判断标签是否为灰度图"""
    label_shape = label.shape
    if len(label_shape) == 2:
        return True
    else:
        return False


def image_label_shape_check(img, label):
    """
    验证图像和标注的大小是否匹配
    """

    flag = True
    img_height = img.shape[0]
    img_width = img.shape[1]
    label_height = label.shape[0]
    label_width = label.shape[1]

    if img_height != label_height or img_width != label_width:
        flag = False
    return flag


def ground_truth_check(label, label_path):
    """
    验证标注图像的格式
    统计标注图类别和像素数
    params:
        label: 标注图
        label_path: 标注图路径
    return:
        png_format: 返回是否是png格式图片
        unique: 返回标注类别
        counts: 返回标注的像素数
    """
    if imghdr.what(label_path) == "png":
        png_format = True
    else:
        png_format = False

    unique, counts = np.unique(label, return_counts=True)

    return png_format, unique, counts


def sum_label_check(label_classes, num_of_each_class, ignore_index,
                    num_classes, total_label_classes, total_num_of_each_class):
    """
    统计所有标注图上的类别和每个类别的像素数
    params:
        label_classes: 标注类别
        num_of_each_class: 各个类别的像素数目
    """
    is_label_correct = True

    if ignore_index in label_classes:
        label_classes2 = np.delete(label_classes,
                                   np.where(label_classes == ignore_index))
    else:
        label_classes2 = label_classes
    if min(label_classes2) < 0 or max(label_classes2) > num_classes - 1:
        is_label_correct = False
    add_class = []
    add_num = []
    for i in range(len(label_classes)):
        gi = label_classes[i]
        if gi in total_label_classes:
            j = total_label_classes.index(gi)
            total_num_of_each_class[j] += num_of_each_class[i]
        else:
            add_class.append(gi)
            add_num.append(num_of_each_class[i])
    total_num_of_each_class += add_num
    total_label_classes += add_class
    return is_label_correct, total_num_of_each_class, total_label_classes


def label_class_check(num_classes, total_label_classes,
                      total_num_of_each_class, wrong_labels, logger):
    """
    检查实际标注类别是否和配置参数`num_classes`,`ignore_index`匹配。

    **NOTE:**
    标注图像类别数值必须在[0~(`num_classes`-1)]范围内或者为`ignore_index`。
    标注类别最好从0开始,否则可能影响精度。
    """
    total_ratio = total_num_of_each_class / sum(total_num_of_each_class)
    total_ratio = np.around(total_ratio, decimals=4)
    total_nc = sorted(
        zip(total_label_classes, total_ratio, total_num_of_each_class))
    if len(wrong_labels) == 0 and not total_nc[0][0]:
        logger.info(correct_print("label class check!"))
    else:
        logger.info(error_print("label class check!"))
        if total_nc[0][0]:
            logger.info("Warning: label classes should start from 0")
        if len(wrong_labels) > 0:
            logger.info("fatal error: label class is out of range [0, {}]".
                        format(num_classes - 1))
            for i in wrong_labels:
                logger.debug(i)
    return total_nc


def label_class_statistics(total_nc, logger):
    """
    对标注图像进行校验,输出校验结果
    """
    logger.info("\nLabel class statistics:\n"
                "(label class, percentage, total pixel number) = {} ".format(
                    total_nc))


def shape_check(shape_unequal_image, logger):
    """输出shape校验结果"""
    if len(shape_unequal_image) == 0:
        logger.info(correct_print("shape check"))
        logger.info("All images are the same shape as the labels")
    else:
        logger.info(error_print("shape check"))
        logger.info(
            "Some images are not the same shape as the labels as follow: ")
        for i in shape_unequal_image:
            logger.debug(i)


def separator_check(wrong_lines, file_list, separator, logger):
    """检查分割符是否复合要求"""
    if len(wrong_lines) == 0:
        logger.info(
            correct_print(
                file_list.split(os.sep)[-1] + " DATASET.separator check"))
    else:
        logger.info(
            error_print(
                file_list.split(os.sep)[-1] + " DATASET.separator check"))
        logger.info("The following list is not separated by {}".format(
            separator))
        for i in wrong_lines:
            logger.debug(i)


def imread_check(imread_failed, logger):
    if len(imread_failed) == 0:
        logger.info(correct_print("dataset reading check"))
        logger.info("All images can be read successfully")
    else:
        logger.info(error_print("dataset reading check"))
        logger.info("Failed to read {} images".format(len(imread_failed)))
        for i in imread_failed:
            logger.debug(i)


def single_channel_label_check(label_not_single_channel, logger):
    if len(label_not_single_channel) == 0:
        logger.info(correct_print("label single_channel check"))
        logger.info("All label images are single_channel")
    else:
        logger.info(error_print("label single_channel check"))
        logger.info(
            "{} label images are not single_channel\nLabel pixel statistics may be insignificant"
            .format(len(label_not_single_channel)))
        for i in label_not_single_channel:
            logger.debug(i)


def img_shape_range_statistics(max_width, min_width, max_height, min_height,
                               logger):
    logger.info("\nImage size statistics:")
    logger.info(
        "max width = {}  min width = {}  max height = {}  min height = {}".
        format(max_width, min_width, max_height, min_height))


def img_channels_statistics(img_channels, logger):
    logger.info("\nImage channels statistics\nImage channels = {}".format(
        np.unique(img_channels)))


def data_analyse_and_check(data_dir, num_classes, separator, ignore_index,
                           logger):
    train_file_list = osp.join(data_dir, 'train.txt')
    val_file_list = osp.join(data_dir, 'val.txt')
    test_file_list = osp.join(data_dir, 'test.txt')
    total_img_num = 0
    has_label = False
    for file_list in [train_file_list, val_file_list, test_file_list]:
        # initialization
        imread_failed = []
        max_width = 0
        max_height = 0
        min_width = sys.float_info.max
        min_height = sys.float_info.max
        label_not_single_channel = []
        shape_unequal_image = []
        wrong_labels = []
        wrong_lines = []
        total_label_classes = []
        total_num_of_each_class = []
        img_channels = []

        with open(file_list, 'r') as fid:
            logger.info("\n-----------------------------\nCheck {}...".format(
                file_list))
            lines = fid.readlines()
            if not lines:
                logger.info("File list is empty!")
                continue
            for line in tqdm(lines):
                line = line.strip()
                parts = line.split(separator)
                if len(parts) == 1:
                    if file_list == train_file_list or file_list == val_file_list:
                        logger.info("Train or val list must have labels!")
                        break
                    img_name = parts
                    img_path = os.path.join(data_dir, img_name[0])
                    try:
                        img = read_img(img_path)
                    except Exception as e:
                        imread_failed.append((line, str(e)))
                        continue
                elif len(parts) == 2:
                    has_label = True
                    img_name, label_name = parts[0], parts[1]
                    img_path = os.path.join(data_dir, img_name)
                    label_path = os.path.join(data_dir, label_name)
                    try:
                        img = read_img(img_path)
                        label = pil_imread(label_path)
                    except Exception as e:
                        imread_failed.append((line, str(e)))
                        continue

                    is_single_channel = is_label_single_channel(label)
                    if not is_single_channel:
                        label_not_single_channel.append(line)
                        continue
                    is_equal_img_label_shape = image_label_shape_check(img,
                                                                       label)
                    if not is_equal_img_label_shape:
                        shape_unequal_image.append(line)
                    png_format, label_classes, num_of_each_class = ground_truth_check(
                        label, label_path)
                    is_label_correct, total_num_of_each_class, total_label_classes = sum_label_check(
                        label_classes, num_of_each_class, ignore_index,
                        num_classes, total_label_classes,
                        total_num_of_each_class)
                    if not is_label_correct:
                        wrong_labels.append(line)
                else:
                    wrong_lines.append(lines)
                    continue

                if total_img_num == 0:
                    channel = img.shape[2]
                    total_means = np.zeros(channel)
                    total_stds = np.zeros(channel)
                    img_min_value = [sys.float_info.max] * channel
                    img_max_value = [0] * channel
                    img_value_num = []
                    [img_value_num.append([]) for i in range(channel)]
                means, stds, img_min_value, img_max_value, img_value_num = img_pixel_statistics(
                    img, img_value_num, img_min_value, img_max_value)
                total_means += means
                total_stds += stds
                max_width, max_height, min_width, min_height = get_img_shape_range(
                    img, max_width, max_height, min_width, min_height)
                img_channels = get_img_channel_num(img, img_channels)
                total_img_num += 1

            # data check
            separator_check(wrong_lines, file_list, separator, logger)
            imread_check(imread_failed, logger)
            if has_label:
                single_channel_label_check(label_not_single_channel, logger)
                shape_check(shape_unequal_image, logger)
                total_nc = label_class_check(num_classes, total_label_classes,
                                             total_num_of_each_class,
                                             wrong_labels, logger)

            # data analyse on train, validation, test set.
            img_channels_statistics(img_channels, logger)
            img_shape_range_statistics(max_width, min_width, max_height,
                                       min_height, logger)
            if has_label:
                label_class_statistics(total_nc, logger)
    # data analyse on the whole dataset.
    data_range_statistics(img_min_value, img_max_value, logger)
    data_distribution_statistics(data_dir, img_value_num, logger)
    cal_normalize_coefficient(total_means, total_stds, total_img_num, logger)


def main():
    args = parse_args()
    data_dir = args.data_dir
    ignore_index = args.ignore_index
    num_classes = args.num_classes
    separator = args.separator

    logger = logging.getLogger()
    logger.setLevel('DEBUG')
    BASIC_FORMAT = "%(message)s"
    formatter = logging.Formatter(BASIC_FORMAT)
    sh = logging.StreamHandler()
    sh.setFormatter(formatter)
    sh.setLevel('INFO')
    th = logging.FileHandler(
        os.path.join(data_dir, 'data_analyse_and_check.log'), 'w')
    th.setFormatter(formatter)
    logger.addHandler(sh)
    logger.addHandler(th)

    data_analyse_and_check(data_dir, num_classes, separator, ignore_index,
                           logger)

    print("\nDetailed error information can be viewed in {}.".format(
        os.path.join(data_dir, 'data_analyse_and_check.log')))


if __name__ == "__main__":
    main()