deploy.py 8.9 KB
Newer Older
S
syyxsxx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import os
import os.path as osp
import time
import cv2
import numpy as np
import yaml
from six import text_type as _text_type
from paddlelite.lite import *


class Predictor:
    def __init__(self, model_nb, model_yaml, thread_num, shape):
        if not osp.exists(model_nb):
            print("model nb file is not exists in {}".format(model_xml))
        self.model_nb = model_nb
        self.shape = shape
        config = MobileConfig()
        config.set_model_from_file(model_nb)
        config.set_threads(thread_num)
        if not osp.exists(model_yaml):
            print("model yaml file is not exists in {}".format(model_yaml))
        with open(model_yaml) as f:
            self.info = yaml.load(f.read(), Loader=yaml.Loader)
        self.model_type = self.info['_Attributes']['model_type']
        self.model_name = self.info['Model']
        self.num_classes = self.info['_Attributes']['num_classes']
        self.labels = self.info['_Attributes']['labels']
        if self.info['Model'] == 'MaskRCNN':
            if self.info['_init_params']['with_fpn']:
                self.mask_head_resolution = 28
            else:
                self.mask_head_resolution = 14
        transforms_mode = self.info.get('TransformsMode', 'RGB')
        if transforms_mode == 'RGB':
            to_rgb = True
        else:
            to_rgb = False
        self.transforms = self.build_transforms(self.info['Transforms'],
                                                to_rgb)
        self.predictor = create_paddle_predictor(config)
        self.total_time = 0
        self.count_num = 0

    def build_transforms(self, transforms_info, to_rgb=True):
        if self.model_type == "classifier":
            import transforms.cls_transforms as transforms
        elif self.model_type == "detector":
            import transforms.det_transforms as transforms
        elif self.model_type == "segmenter":
            import transforms.seg_transforms as transforms
        op_list = list()
        for op_info in transforms_info:
            op_name = list(op_info.keys())[0]
            op_attr = op_info[op_name]
            if not hasattr(transforms, op_name):
                raise Exception(
                    "There's no operator named '{}' in transforms of {}".
                    format(op_name, self.model_type))
            op_list.append(getattr(transforms, op_name)(**op_attr))
        eval_transforms = transforms.Compose(op_list)
        if hasattr(eval_transforms, 'to_rgb'):
            eval_transforms.to_rgb = to_rgb
        self.arrange_transforms(eval_transforms)
        return eval_transforms

    def arrange_transforms(self, eval_transforms):
        if self.model_type == 'classifier':
            import transforms.cls_transforms as transforms
            arrange_transform = transforms.ArrangeClassifier
        elif self.model_type == 'segmenter':
            import transforms.seg_transforms as transforms
            arrange_transform = transforms.ArrangeSegmenter
        elif self.model_type == 'detector':
            import transforms.det_transforms as transforms
            arrange_name = 'Arrange{}'.format(self.model_name)
            arrange_transform = getattr(transforms, arrange_name)
        else:
            raise Exception("Unrecognized model type: {}".format(
                self.model_type))
        if type(eval_transforms.transforms[-1]).__name__.startswith('Arrange'):
            eval_transforms.transforms[-1] = arrange_transform(mode='test')
        else:
            eval_transforms.transforms.append(arrange_transform(mode='test'))

    def raw_predict(self, preprocessed_input):
        self.count_num += 1
        input_tensor = self.predictor.get_input(0)
        input_tensor.resize(self.shape)
        input_tensor.set_float_data(preprocessed_input['image'])
        if self.model_name == "YOLOv3":
            input_size_tensor = self.predictor.get_input(1)
            input_size_tensor.resize([1, 2])
            input_size_tensor.set_float_data(preprocessed_input['im_size'])
        #Start  inference
        start_time = time.time()
        self.predictor.run()
        time_use = time.time() - start_time
        if (self.count_num >= 20):
            self.total_time += time_use
        if (self.count_num >= 120):
            print("avgtime:", self.total_time * 10)

        #Processing output blob
        print("Processing output blob")
        return

    def preprocess(self, image):
        res = dict()
        if self.model_type == "classifier":
            im, = self.transforms(image)
            im = np.expand_dims(im, axis=0).copy()
            im = im.flatten()
            res['image'] = im
        elif self.model_type == "detector":
            if self.model_name == "YOLOv3":
                im, im_shape = self.transforms(image)
                im = np.expand_dims(im, axis=0).copy()
                im_shape = np.expand_dims(im_shape, axis=0).copy()
                res['image'] = im
                res['im_size'] = im_shape
            if self.model_name.count('RCNN') > 0:
                im, im_resize_info, im_shape = self.transforms(image)
                im = np.expand_dims(im, axis=0).copy()
                im_resize_info = np.expand_dims(im_resize_info, axis=0).copy()
                im_shape = np.expand_dims(im_shape, axis=0).copy()
                res['image'] = im
                res['im_info'] = im_resize_info
                res['im_shape'] = im_shape
        elif self.model_type == "segmenter":
            im, im_info = self.transforms(image)
            im = np.expand_dims(im, axis=0).copy()
            #np.savetxt('./input_data.txt',im.flatten())
            res['image'] = im
            res['im_info'] = im_info
        return res

    def classifier_postprocess(self, topk=1):
        output_tensor = self.predictor.get_output(0)
        output_data = output_tensor.float_data()
        true_topk = min(self.num_classes, topk)
        pred_label = np.argsort(-np.array(output_data))[:true_topk]
        result = [{
            'category_id': l,
            'category': self.labels[l],
            'score': output_data[l],
        } for l in pred_label]
        print(result)
        return result

    def segmenter_postprocess(self, preprocessed_inputs):
        out_label_tensor = self.predictor.get_output(0)
        out_label = out_label_tensor.float_data()
        label_shape = tuple(out_label_tensor.shape())
        label_map = np.array(out_label).astype('uint8')
        label_map = label_map.reshap(label_shape)
        label_map = np.squeeze(label_map)

        out_score_tensor = self.predictor.get_output(1)
        out_score = out_score_tensor.float_data()
        score_shape = tuple(out_score_tensor.shape())
        score_map = np.array(out_score)
        score_map = score_map.reshap(score_shape)
        score_map = np.transpose(score_map, (1, 2, 0))

        im_info = preprocessed_inputs['im_info']
        for info in im_info[::-1]:
            if info[0] == 'resize':
                w, h = info[1][1], info[1][0]
                label_map = cv2.resize(label_map, (w, h), cv2.INTER_NEAREST)
                score_map = cv2.resize(score_map, (w, h), cv2.INTER_LINEAR)
            elif info[0] == 'padding':
                w, h = info[1][1], info[1][0]
                label_map = label_map[0:h, 0:w]
                score_map = score_map[0:h, 0:w, :]
            else:
                raise Exception("Unexpected info '{}' in im_info".format(info[
                    0]))
        return {'label_map': label_map, 'score_map': score_map}

    def detector_postprocess(self, preprocessed_inputs):
        out_tensor = self.predictor.get_output(0)
        out_data = out_tensor.float_data()
        out_shape = tuple(out_tensor.shape())
        out_data = np.array(out_data)
        outputs = label_data.reshap(out_shape)

        result = []
        for out in outputs:
            result.append(out.tolist())
        return result

    def predict(self, image, topk=1, threshold=0.5):
        preprocessed_input = self.preprocess(image)
        self.raw_predict(preprocessed_input)
        if self.model_type == "classifier":
            results = self.classifier_postprocess(topk)
        elif self.model_type == "detector":
            results = self.detector_postprocess(preprocessed_input)
        elif self.model_type == "segmenter":
            pass
            results = self.segmenter_postprocess(preprocessed_input)