slim_model_zoo.md 7.6 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
# PaddleX压缩模型库

## 图像分类

数据集:ImageNet-1000

### 量化

| 模型 | 压缩策略 | Top-1准确率 | 存储体积 | TensorRT时延(V100, ms) |
|:--:|:---:|:--:|:--:|:--:|
|MobileNetV1| 无 |70.99%| 17MB | -|
|MobileNetV1| 量化 |70.18% (-0.81%)| 4.4MB | - |
| MobileNetV2 | 无 |72.15%| 15MB | - |
| MobileNetV2 | 量化 | 71.15% (-1%)| 4.0MB   | - |
|ResNet50| 无 |76.50%| 99MB | 2.71 |
|ResNet50| 量化 |76.33% (-0.17%)| 25.1MB | 1.19 |

分类模型Lite时延(ms)

| 设备    | 模型类型    | 压缩策略      | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------- | ----------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| 高通835 | MobileNetV1 | 无 | 96.1942        | 53.2058        | 32.4468        | 88.4955        | 47.95          | 27.5189        |
| 高通835 | MobileNetV1 | 量化    | 60.5615        | 32.4016        | 16.6596        | 56.5266        | 29.7178        | 15.1459        |
| 高通835 | MobileNetV2 | 无 | 65.715         | 38.1346        | 25.155         | 61.3593        | 36.2038        | 22.849         |
| 高通835 | MobileNetV2 | 量化    | 48.3495        | 30.3069        | 22.1506        | 45.8715        | 27.4105        | 18.2223        |
| 高通835 | ResNet50    | 无 | 526.811        | 319.6486       | 205.8345       | 506.1138       | 335.1584       | 214.8936       |
| 高通835 | ResNet50    | 量化    | 476.0507       | 256.5963       | 139.7266       | 461.9176       | 248.3795       | 149.353        |
| 高通855 | MobileNetV1 | 无 | 33.5086        | 19.5773        | 11.7534        | 31.3474        | 18.5382        | 10.0811        |
| 高通855 | MobileNetV1 | 量化    | 37.0498        | 21.7081        | 11.0779        | 14.0947        | 8.1926         | 4.2934         |
| 高通855 | MobileNetV2 | 无 | 25.0396        | 15.2862        | 9.6609         | 22.909         | 14.1797        | 8.8325         |
| 高通855 | MobileNetV2 | 量化    | 28.1631        | 18.3917        | 11.8333        | 16.9399        | 11.1772        | 7.4176         |
| 高通855 | ResNet50    | 无 | 185.3705       | 113.0825       | 87.0741        | 177.7367       | 110.0433       | 74.4114        |
| 高通855 | ResNet50    | 量化    | 328.2683       | 201.9937       | 106.744        | 242.6397       | 150.0338       | 79.8659        |
| 麒麟970 | MobileNetV1 | 无 | 101.2455       | 56.4053        | 35.6484        | 94.8985        | 51.7251        | 31.9511        |
| 麒麟970 | MobileNetV1 | 量化    | 62.4412        | 32.2585        | 16.6215        | 57.825         | 29.2573        | 15.1206        |
| 麒麟970 | MobileNetV2 | 无 | 70.4176        | 42.0795        | 25.1939        | 68.9597        | 39.2145        | 22.6617        |
| 麒麟970 | MobileNetV2 | 量化    | 53.0961        | 31.7987        | 21.8334        | 49.383         | 28.2358        | 18.3642        |
| 麒麟970 | ResNet50    | 无 | 586.8943       | 344.0858       | 228.2293       | 573.3344       | 351.4332       | 225.8006       |
| 麒麟970 | ResNet50    | 量化    | 489.6188       | 258.3279       | 142.6063       | 480.0064       | 249.5339       | 138.5284       |

### 剪裁

PaddleLite推理耗时说明:

环境:Qualcomm SnapDragon 845 + armv8

速度指标:Thread1/Thread2/Thread4耗时


| 模型 | 压缩策略 | Top-1 | 存储体积 |PaddleLite推理耗时|TensorRT推理速度(FPS)|
|:--:|:---:|:--:|:--:|:--:|:--:|
| MobileNetV1 |    无    |         70.99%         |       17MB       | 66.052\35.8014\19.5762|-|
| MobileNetV1 | 剪裁 -30% |  70.4% (-0.59%)  |       12MB       | 46.5958\25.3098\13.6982|-|
| MobileNetV1 | 剪裁 -50% | 69.8% (-1.19%) |       9MB        | 37.9892\20.7882\11.3144|-|

## 目标检测

### 量化

数据集: COCO2017

|              模型              |  压缩策略   | 数据集 | Image/GPU | 输入608 Box AP | 存储体积 |   TensorRT时延(V100, ms) |
| :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :----------: |
|      MobileNet-V1-YOLOv3       | 无 |  COCO  |     8     |      29.3      |        95MB       |  - |
|      MobileNet-V1-YOLOv3       | 量化  |  COCO  |     8     |     27.9 (-1.4)|        25MB       | -  |
|      R34-YOLOv3                | 无 |  COCO  |     8     |      36.2      |        162MB       |  - |
|      R34-YOLOv3                | 量化  |  COCO  |     8     | 35.7 (-0.5)    |        42.7MB      |  - |

### 剪裁

数据集:Pasacl VOC & COCO2017

PaddleLite推理耗时说明:

环境:Qualcomm SnapDragon 845 + armv8

速度指标:Thread1/Thread2/Thread4耗时

|              模型              |     压缩策略      |   数据集   | Image/GPU | 输入608 Box mmAP | 存储体积 | PaddleLite推理耗时(ms)(608*608) | TensorRT推理速度(FPS)(608*608) |
| :----------------------------: | :---------------: | :--------: | :-------: | :------------: | :----------: | :--------------: | :--------------: |
|      MobileNet-V1-YOLOv3       | 无     | Pascal VOC |     8     |      76.2      |      94MB      | 1238\796.943\520.101|60.04|
|      MobileNet-V1-YOLOv3       | 剪裁 -52.88% | Pascal VOC |     8     |  77.6 (+1.4)   |      31MB      | 602.497\353.759\222.427 |99.36|
|      MobileNet-V1-YOLOv3       | 无     |    COCO    |     8     |      29.3      |      95MB      |-|-|
|      MobileNet-V1-YOLOv3       | 剪裁 -51.77% |    COCO    |     8     |  26.0 (-3.3)   |      32MB      |-|73.93|

## 语义分割

数据集:Cityscapes


### 量化

|          模型          |  压缩策略   |     mIoU      | 存储体积 |
| :--------------------: | :---------: | :-----------: | :------------: |
| DeepLabv3-MobileNetv2 | 无 |     69.81     |      7.4MB       |
| DeepLabv3-MobileNetv2 | 量化  | 67.59 (-2.22) |      2.1MB       |

图像分割模型Lite时延(ms), 输入尺寸769 x 769

| 设备    | 模型类型               | 压缩策略      | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------- | ---------------------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| 高通835 | Deeplabv3-MobileNetV2  | 无 | 1282.8126      | 793.2064       | 653.6538       | 1193.9908      | 737.1827       | 593.4522       |
| 高通835 | Deeplabv3-MobileNetV2  | 量化    | 981.44         | 658.4969       | 538.6166       | 885.3273       | 586.1284       | 484.0018       |
| 高通855 | Deeplabv3-MobileNetV2  | 无 | 639.4425       | 390.1851       | 322.7014       | 477.7667       | 339.7411       | 262.2847       |
| 高通855 | Deeplabv3-MobileNetV2  | 量化    | 705.7589       | 474.4076       | 427.2951       | 394.8352       | 297.4035       | 264.6724       |
| 麒麟970 | Deeplabv3-MobileNetV2  | 无 | 1771.1301      | 1746.0569      | 1222.4805      | 1448.9739      | 1192.4491      | 760.606        |
| 麒麟970 | Deeplabv3-MobileNetV2  | 量化    | 1320.386       | 918.5328       | 672.2481       | 1020.753       | 820.094        | 591.4114       |

### 剪裁

PaddleLite推理耗时说明:

环境:Qualcomm SnapDragon 845 + armv8

速度指标:Thread1/Thread2/Thread4耗时


|   模型    |     压缩方法      |     mIoU      | 存储体积 | PaddleLite推理耗时 | TensorRT推理速度(FPS) |
| :-------: | :---------------: | :-----------: | :------: | :------------: | :----: |
| FastSCNN | 无     |     69.64     |       11MB       | 1226.36\682.96\415.664 |39.53|
| FastSCNN | 剪裁 -47.60% | 66.68 (-2.96) |      5.7MB       | 866.693\494.467\291.748 |51.48|