fast_scnn.py 1.8 KB
Newer Older
F
FlyingQianMM 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
import os
# 选择使用0号卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

import paddlex as pdx
from paddlex.seg import transforms

# 下载和解压视盘分割数据集
optic_dataset = 'https://bj.bcebos.com/paddlex/datasets/optic_disc_seg.tar.gz'
pdx.utils.download_and_decompress(optic_dataset, path='./')

# 定义训练和验证时的transforms
# API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/transforms/seg_transforms.html#composedsegtransforms
train_transforms = transforms.ComposedSegTransforms(
    mode='train', train_crop_size=[769, 769])
eval_transforms = transforms.ComposedSegTransforms(mode='eval')

# 定义训练和验证所用的数据集
# API说明: https://paddlex.readthedocs.io/zh_CN/latest/apis/datasets/semantic_segmentation.html#segdataset
train_dataset = pdx.datasets.SegDataset(
    data_dir='optic_disc_seg',
    file_list='optic_disc_seg/train_list.txt',
    label_list='optic_disc_seg/labels.txt',
    transforms=train_transforms,
    shuffle=True)
eval_dataset = pdx.datasets.SegDataset(
    data_dir='optic_disc_seg',
    file_list='optic_disc_seg/val_list.txt',
    label_list='optic_disc_seg/labels.txt',
    transforms=eval_transforms)

# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/unet/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP

# https://paddlex.readthedocs.io/zh_CN/latest/apis/models/semantic_segmentation.html#hrnet
num_classes = len(train_dataset.labels)
model = pdx.seg.FastSCNN(num_classes=num_classes)
model.train(
    num_epochs=20,
    train_dataset=train_dataset,
    train_batch_size=4,
    eval_dataset=eval_dataset,
    learning_rate=0.01,
    save_dir='output/fastscnn',
    use_vdl=True)