resnet50_vd_ssld.py 1.6 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10
import os
from paddlex.cls import transforms
import paddlex as pdx

# 下载和解压蔬菜分类数据集
veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
pdx.utils.download_and_decompress(veg_dataset, path='./')

# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
J
jiangjiajun 已提交
11 12
    transforms.RandomCrop(crop_size=224), 
    transforms.RandomHorizontalFlip(),
J
jiangjiajun 已提交
13 14 15 16
    transforms.Normalize()
])
eval_transforms = transforms.Compose([
    transforms.ResizeByShort(short_size=256),
J
jiangjiajun 已提交
17 18
    transforms.CenterCrop(crop_size=224), 
    transforms.Normalize()
J
jiangjiajun 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
])

# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.ImageNet(
    data_dir='vegetables_cls',
    file_list='vegetables_cls/train_list.txt',
    label_list='vegetables_cls/labels.txt',
    transforms=train_transforms,
    shuffle=True)
eval_dataset = pdx.datasets.ImageNet(
    data_dir='vegetables_cls',
    file_list='vegetables_cls/val_list.txt',
    label_list='vegetables_cls/labels.txt',
    transforms=eval_transforms)

# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/mobilenetv2/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
J
jiangjiajun 已提交
39
model = pdx.cls.ResNet50_vd_ssld(num_classes=len(train_dataset.labels))
J
jiangjiajun 已提交
40 41 42 43 44 45 46
model.train(
    num_epochs=10,
    train_dataset=train_dataset,
    train_batch_size=32,
    eval_dataset=eval_dataset,
    lr_decay_epochs=[4, 6, 8],
    learning_rate=0.025,
J
jiangjiajun 已提交
47
    save_dir='output/resnet50_vd_ssld',
J
jiangjiajun 已提交
48
    use_vdl=True)