utils.py 14.2 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import time
import os
import os.path as osp
import numpy as np
import six
import yaml
import math
from . import logging


def seconds_to_hms(seconds):
    h = math.floor(seconds / 3600)
    m = math.floor((seconds - h * 3600) / 60)
    s = int(seconds - h * 3600 - m * 60)
    hms_str = "{}:{}:{}".format(h, m, s)
    return hms_str


def get_environ_info():
    import paddle.fluid as fluid
    info = dict()
    info['place'] = 'cpu'
    info['num'] = int(os.environ.get('CPU_NUM', 1))
    if os.environ.get('CUDA_VISIBLE_DEVICES', None) != "":
        if hasattr(fluid.core, 'get_cuda_device_count'):
            gpu_num = 0
            try:
                gpu_num = fluid.core.get_cuda_device_count()
            except:
                os.environ['CUDA_VISIBLE_DEVICES'] = ''
                pass
            if gpu_num > 0:
                info['place'] = 'cuda'
                info['num'] = fluid.core.get_cuda_device_count()
    return info


def parse_param_file(param_file, return_shape=True):
    from paddle.fluid.proto.framework_pb2 import VarType
    f = open(param_file, 'rb')
    version = np.fromstring(f.read(4), dtype='int32')
    lod_level = np.fromstring(f.read(8), dtype='int64')
    for i in range(int(lod_level)):
        _size = np.fromstring(f.read(8), dtype='int64')
        _ = f.read(_size)
    version = np.fromstring(f.read(4), dtype='int32')
    tensor_desc = VarType.TensorDesc()
    tensor_desc_size = np.fromstring(f.read(4), dtype='int32')
    tensor_desc.ParseFromString(f.read(int(tensor_desc_size)))
    tensor_shape = tuple(tensor_desc.dims)
    if return_shape:
        f.close()
        return tuple(tensor_desc.dims)
    if tensor_desc.data_type != 5:
        raise Exception(
            "Unexpected data type while parse {}".format(param_file))
    data_size = 4
    for i in range(len(tensor_shape)):
        data_size *= tensor_shape[i]
    weight = np.fromstring(f.read(data_size), dtype='float32')
    f.close()
    return np.reshape(weight, tensor_shape)


def fuse_bn_weights(exe, main_prog, weights_dir):
    import paddle.fluid as fluid
    logging.info("Try to fuse weights of batch_norm...")
    bn_vars = list()
    for block in main_prog.blocks:
        ops = list(block.ops)
        for op in ops:
            if op.type == 'affine_channel':
                scale_name = op.input('Scale')[0]
                bias_name = op.input('Bias')[0]
                prefix = scale_name[:-5]
                mean_name = prefix + 'mean'
                variance_name = prefix + 'variance'
                if not osp.exists(osp.join(
                        weights_dir, mean_name)) or not osp.exists(
                            osp.join(weights_dir, variance_name)):
                    logging.info(
                        "There's no batch_norm weight found to fuse, skip fuse_bn."
                    )
                    return

                bias = block.var(bias_name)
                pretrained_shape = parse_param_file(
                    osp.join(weights_dir, bias_name))
                actual_shape = tuple(bias.shape)
                if pretrained_shape != actual_shape:
                    continue
                bn_vars.append(
                    [scale_name, bias_name, mean_name, variance_name])
    eps = 1e-5
    for names in bn_vars:
        scale_name, bias_name, mean_name, variance_name = names
        scale = parse_param_file(
            osp.join(weights_dir, scale_name), return_shape=False)
        bias = parse_param_file(
            osp.join(weights_dir, bias_name), return_shape=False)
        mean = parse_param_file(
            osp.join(weights_dir, mean_name), return_shape=False)
        variance = parse_param_file(
            osp.join(weights_dir, variance_name), return_shape=False)
        bn_std = np.sqrt(np.add(variance, eps))
        new_scale = np.float32(np.divide(scale, bn_std))
        new_bias = bias - mean * new_scale
        scale_tensor = fluid.global_scope().find_var(scale_name).get_tensor()
        bias_tensor = fluid.global_scope().find_var(bias_name).get_tensor()
        scale_tensor.set(new_scale, exe.place)
        bias_tensor.set(new_bias, exe.place)
    if len(bn_vars) == 0:
        logging.info(
            "There's no batch_norm weight found to fuse, skip fuse_bn.")
    else:
        logging.info("There's {} batch_norm ops been fused.".format(
            len(bn_vars)))


def load_pdparams(exe, main_prog, model_dir):
    import paddle.fluid as fluid
    from paddle.fluid.proto.framework_pb2 import VarType
    from paddle.fluid.framework import Program

    vars_to_load = list()
    import pickle
    with open(osp.join(model_dir, 'model.pdparams'), 'rb') as f:
        params_dict = pickle.load(f) if six.PY2 else pickle.load(
            f, encoding='latin1')
    unused_vars = list()
    for var in main_prog.list_vars():
        if not isinstance(var, fluid.framework.Parameter):
            continue
        if var.name not in params_dict:
            raise Exception("{} is not in saved paddlex model".format(
                var.name))
        if var.shape != params_dict[var.name].shape:
            unused_vars.append(var.name)
            logging.warning(
                "[SKIP] Shape of pretrained weight {} doesn't match.(Pretrained: {}, Actual: {})"
                .format(var.name, params_dict[var.name].shape, var.shape))
            continue
        vars_to_load.append(var)
        logging.debug("Weight {} will be load".format(var.name))
    for var_name in unused_vars:
        del params_dict[var_name]
    fluid.io.set_program_state(main_prog, params_dict)

    if len(vars_to_load) == 0:
        logging.warning(
            "There is no pretrain weights loaded, maybe you should check you pretrain model!"
        )
    else:
        logging.info("There are {} varaibles in {} are loaded.".format(
            len(vars_to_load), model_dir))


173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
def is_persistable(var):
    import paddle.fluid as fluid
    from paddle.fluid.proto.framework_pb2 import VarType

    if var.desc.type() == fluid.core.VarDesc.VarType.FEED_MINIBATCH or \
        var.desc.type() == fluid.core.VarDesc.VarType.FETCH_LIST or \
        var.desc.type() == fluid.core.VarDesc.VarType.READER:
        return False
    return var.persistable


def is_belong_to_optimizer(var):
    import paddle.fluid as fluid
    from paddle.fluid.proto.framework_pb2 import VarType

    if not (isinstance(var, fluid.framework.Parameter)
            or var.desc.need_check_feed()):
        return is_persistable(var)
    return False


def load_pdopt(exe, main_prog, model_dir):
    import paddle.fluid as fluid

    optimizer_var_list = list()
    vars_to_load = list()
    import pickle
    with open(osp.join(model_dir, 'model.pdopt'), 'rb') as f:
        opt_dict = pickle.load(f) if six.PY2 else pickle.load(
            f, encoding='latin1')
    optimizer_var_list = list(
        filter(is_belong_to_optimizer, main_prog.list_vars()))
    exception_message = "the training process can not be resumed due to optimizer set now and last time is different. Recommend to use `pretrain_weights` instead of `resume_checkpoint`"
    if len(optimizer_var_list) > 0:
        for var in optimizer_var_list:
            if var.name not in opt_dict:
                raise Exception(
                    "{} is not in saved paddlex optimizer, {}".format(
                        var.name, exception_message))
            if var.shape != opt_dict[var.name].shape:
                raise Exception(
                    "Shape of optimizer variable {} doesn't match.(Last: {}, Now: {}), {}"
                    .format(var.name, opt_dict[var.name].shape,
                            var.shape), exception_message)
        optimizer_varname_list = [var.name for var in optimizer_var_list]
        for k, v in opt_dict.items():
            if k not in optimizer_varname_list:
                raise Exception(
                    "{} in saved paddlex optimizer is not in the model, {}".
                    format(k, exception_message))
        fluid.io.set_program_state(main_prog, opt_dict)

    if len(optimizer_var_list) == 0:
        raise Exception(
            "There is no optimizer parameters in the model, please set the optimizer!"
        )
    else:
        logging.info(
            "There are {} optimizer parameters in {} are loaded.".format(
                len(optimizer_var_list), model_dir))


def load_pretrain_weights(exe,
                          main_prog,
                          weights_dir,
                          fuse_bn=False,
                          resume=False):
J
jiangjiajun 已提交
240 241 242
    if not osp.exists(weights_dir):
        raise Exception("Path {} not exists.".format(weights_dir))
    if osp.exists(osp.join(weights_dir, "model.pdparams")):
243 244 245 246 247 248 249 250 251
        load_pdparams(exe, main_prog, weights_dir)
        if resume:
            if osp.exists(osp.join(weights_dir, "model.pdopt")):
                load_pdopt(exe, main_prog, weights_dir)
            else:
                raise Exception(
                    "Optimizer file {} does not exist. Stop resumming training. Recommend to use `pretrain_weights` instead of `resume_checkpoint`"
                    .format(osp.join(weights_dir, "model.pdopt")))
        return
J
jiangjiajun 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    import paddle.fluid as fluid
    vars_to_load = list()
    for var in main_prog.list_vars():
        if not isinstance(var, fluid.framework.Parameter):
            continue
        if not osp.exists(osp.join(weights_dir, var.name)):
            logging.debug(
                "[SKIP] Pretrained weight {}/{} doesn't exist".format(
                    weights_dir, var.name))
            continue
        pretrained_shape = parse_param_file(osp.join(weights_dir, var.name))
        actual_shape = tuple(var.shape)
        if pretrained_shape != actual_shape:
            logging.warning(
                "[SKIP] Shape of pretrained weight {}/{} doesn't match.(Pretrained: {}, Actual: {})"
                .format(weights_dir, var.name, pretrained_shape, actual_shape))
            continue
        vars_to_load.append(var)
        logging.debug("Weight {} will be load".format(var.name))

    fluid.io.load_vars(
        executor=exe,
        dirname=weights_dir,
        main_program=main_prog,
        vars=vars_to_load)
    if len(vars_to_load) == 0:
        logging.warning(
            "There is no pretrain weights loaded, maybe you should check you pretrain model!"
        )
    else:
        logging.info("There are {} varaibles in {} are loaded.".format(
            len(vars_to_load), weights_dir))
    if fuse_bn:
        fuse_bn_weights(exe, main_prog, weights_dir)
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    if resume:
        exception_message = "the training process can not be resumed due to optimizer set now and last time is different. Recommend to use `pretrain_weights` instead of `resume_checkpoint`"
        optimizer_var_list = list(
            filter(is_belong_to_optimizer, main_prog.list_vars()))
        if len(optimizer_var_list) > 0:
            for var in optimizer_var_list:
                if not osp.exists(osp.join(weights_dir, var.name)):
                    raise Exception(
                        "Optimizer parameter {} doesn't exist, {}".format(
                            osp.join(weights_dir, var.name),
                            exception_message))
                pretrained_shape = parse_param_file(
                    osp.join(weights_dir, var.name))
                actual_shape = tuple(var.shape)
                if pretrained_shape != actual_shape:
                    raise Exception(
                        "Shape of optimizer variable {} doesn't match.(Last: {}, Now: {}), {}"
                        .format(var.name, opt_dict[var.name].shape,
                                var.shape), exception_message)
            optimizer_varname_list = [var.name for var in optimizer_var_list]
            if os.exists(osp.join(weights_dir, 'learning_rate')
                         ) and 'learning_rate' not in optimizer_varname_list:
                raise Exception(
                    "Optimizer parameter {}/learning_rate is not in the model, {}"
                    .format(weights_dir, exception_message))
            fluid.io.load_vars(
                executor=exe,
                dirname=weights_dir,
                main_program=main_prog,
                vars=optimizer_var_list)

        if len(optimizer_var_list) == 0:
            raise Exception(
                "There is no optimizer parameters in the model, please set the optimizer!"
            )
        else:
            logging.info(
                "There are {} optimizer parameters in {} are loaded.".format(
                    len(optimizer_var_list), weights_dir))
F
FlyingQianMM 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360


class EarlyStop:
    def __init__(self, patience, thresh):
        self.patience = patience
        self.counter = 0
        self.score = None
        self.max = 0
        self.thresh = thresh
        if patience < 1:
            raise Exception("Argument patience should be a positive integer.")

    def __call__(self, current_score):
        if self.score is None:
            self.score = current_score
            return False
        elif current_score > self.max:
            self.counter = 0
            self.score = current_score
            self.max = current_score
            return False
        else:
            if (abs(self.score - current_score) < self.thresh
                    or current_score < self.score):
                self.counter += 1
                self.score = current_score
                logging.debug(
                    "EarlyStopping: %i / %i" % (self.counter, self.patience))
                if self.counter >= self.patience:
                    logging.info("EarlyStopping: Stop training")
                    return True
                return False
            else:
                self.counter = 0
                self.score = current_score
                return False