transforms.cpp 7.7 KB
Newer Older
C
Channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>
#include <string>
#include <vector>

#include "include/paddlex/transforms.h"

namespace PaddleX {

std::map<std::string, int> interpolations = {{"LINEAR", cv::INTER_LINEAR},
                                             {"NEAREST", cv::INTER_NEAREST},
                                             {"AREA", cv::INTER_AREA},
                                             {"CUBIC", cv::INTER_CUBIC},
                                             {"LANCZOS4", cv::INTER_LANCZOS4}};

bool Normalize::Run(cv::Mat* im, ImageBlob* data) {
  for (int h = 0; h < im->rows; h++) {
    for (int w = 0; w < im->cols; w++) {
      im->at<cv::Vec3f>(h, w)[0] =
          (im->at<cv::Vec3f>(h, w)[0] / 255.0 - mean_[0]) / std_[0];
      im->at<cv::Vec3f>(h, w)[1] =
          (im->at<cv::Vec3f>(h, w)[1] / 255.0 - mean_[1]) / std_[1];
      im->at<cv::Vec3f>(h, w)[2] =
          (im->at<cv::Vec3f>(h, w)[2] / 255.0 - mean_[2]) / std_[2];
    }
  }
  return true;
}

float ResizeByShort::GenerateScale(const cv::Mat& im) {
  int origin_w = im.cols;
  int origin_h = im.rows;
  int im_size_max = std::max(origin_w, origin_h);
  int im_size_min = std::min(origin_w, origin_h);
  float scale =
      static_cast<float>(short_size_) / static_cast<float>(im_size_min);
  if (max_size_ > 0) {
    if (round(scale * im_size_max) > max_size_) {
      scale = static_cast<float>(max_size_) / static_cast<float>(im_size_max);
    }
  }
  return scale;
}

bool ResizeByShort::Run(cv::Mat* im, ImageBlob* data) {
  data->im_size_before_resize_[0] = im->rows;
  data->im_size_before_resize_[1] = im->cols;
  data->reshape_order_.push_back("resize");

  float scale = GenerateScale(*im);
  int width = static_cast<int>(scale * im->cols);
  int height = static_cast<int>(scale * im->rows);
  cv::resize(*im, *im, cv::Size(width, height), 0, 0, cv::INTER_LINEAR);

  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  data->scale = scale;
  return true;
}

bool CenterCrop::Run(cv::Mat* im, ImageBlob* data) {
  int height = static_cast<int>(im->rows);
  int width = static_cast<int>(im->cols);
  if (height < height_ || width < width_) {
    std::cerr << "[CenterCrop] Image size less than crop size" << std::endl;
    return false;
  }
  int offset_x = static_cast<int>((width - width_) / 2);
  int offset_y = static_cast<int>((height - height_) / 2);
  cv::Rect crop_roi(offset_x, offset_y, width_, height_);
  *im = (*im)(crop_roi);
  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  return true;
}

bool Padding::Run(cv::Mat* im, ImageBlob* data) {
  data->im_size_before_padding_[0] = im->rows;
  data->im_size_before_padding_[1] = im->cols;
  data->reshape_order_.push_back("padding");

  int padding_w = 0;
  int padding_h = 0;
  if (width_ > 0 & height_ > 0) {
    padding_w = width_ - im->cols;
    padding_h = height_ - im->rows;
  } else if (coarsest_stride_ > 0) {
    padding_h =
        ceil(im->rows * 1.0 / coarsest_stride_) * coarsest_stride_ - im->rows;
    padding_w =
        ceil(im->cols * 1.0 / coarsest_stride_) * coarsest_stride_ - im->cols;
  }
  if (padding_h < 0 || padding_w < 0) {
    std::cerr << "[Padding] Computed padding_h=" << padding_h
              << ", padding_w=" << padding_w
              << ", but they should be greater than 0." << std::endl;
    return false;
  }
  cv::copyMakeBorder(
      *im, *im, 0, padding_h, 0, padding_w, cv::BORDER_CONSTANT, cv::Scalar(0));
  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  return true;
}

bool ResizeByLong::Run(cv::Mat* im, ImageBlob* data) {
  if (long_size_ <= 0) {
    std::cerr << "[ResizeByLong] long_size should be greater than 0"
              << std::endl;
    return false;
  }
  data->im_size_before_resize_[0] = im->rows;
  data->im_size_before_resize_[1] = im->cols;
  data->reshape_order_.push_back("resize");
  int origin_w = im->cols;
  int origin_h = im->rows;

  int im_size_max = std::max(origin_w, origin_h);
  float scale =
      static_cast<float>(long_size_) / static_cast<float>(im_size_max);
  cv::resize(*im, *im, cv::Size(), scale, scale, cv::INTER_NEAREST);
  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  data->scale = scale;
  return true;
}

bool Resize::Run(cv::Mat* im, ImageBlob* data) {
  if (width_ <= 0 || height_ <= 0) {
    std::cerr << "[Resize] width and height should be greater than 0"
              << std::endl;
    return false;
  }
  if (interpolations.count(interp_) <= 0) {
    std::cerr << "[Resize] Invalid interpolation method: '" << interp_ << "'"
              << std::endl;
    return false;
  }
  data->im_size_before_resize_[0] = im->rows;
  data->im_size_before_resize_[1] = im->cols;
  data->reshape_order_.push_back("resize");

  cv::resize(
      *im, *im, cv::Size(width_, height_), 0, 0, interpolations[interp_]);
  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  return true;
}

void Transforms::Init(const YAML::Node& transforms_node, bool to_rgb) {
  transforms_.clear();
  to_rgb_ = to_rgb;
  for (const auto& item : transforms_node) {
    std::string name = item.begin()->first.as<std::string>();
    std::cout << "trans name: " << name << std::endl;
    std::shared_ptr<Transform> transform = CreateTransform(name);
    transform->Init(item.begin()->second);
    transforms_.push_back(transform);
  }
}

std::shared_ptr<Transform> Transforms::CreateTransform(
    const std::string& transform_name) {
  if (transform_name == "Normalize") {
    return std::make_shared<Normalize>();
  } else if (transform_name == "ResizeByShort") {
    return std::make_shared<ResizeByShort>();
  } else if (transform_name == "CenterCrop") {
    return std::make_shared<CenterCrop>();
  } else if (transform_name == "Resize") {
    return std::make_shared<Resize>();
  } else if (transform_name == "Padding") {
    return std::make_shared<Padding>();
  } else if (transform_name == "ResizeByLong") {
    return std::make_shared<ResizeByLong>();
  } else {
    std::cerr << "There's unexpected transform(name='" << transform_name
              << "')." << std::endl;
    exit(-1);
  }
}

bool Transforms::Run(cv::Mat* im, ImageBlob* data) {
  // 按照transforms中预处理算子顺序处理图像
  if (to_rgb_) {
    cv::cvtColor(*im, *im, cv::COLOR_BGR2RGB);
  }
  (*im).convertTo(*im, CV_32FC3);
  data->ori_im_size_[0] = im->rows;
  data->ori_im_size_[1] = im->cols;
  data->new_im_size_[0] = im->rows;
  data->new_im_size_[1] = im->cols;
  for (int i = 0; i < transforms_.size(); ++i) {
    if (!transforms_[i]->Run(im, data)) {
      std::cerr << "Apply transforms to image failed!" << std::endl;
      return false;
    }
  }

  // 将图像由NHWC转为NCHW格式
  // 同时转为连续的内存块存储到ImageBlob
  int h = im->rows;
  int w = im->cols;
  int c = im->channels();
  (data->im_data_).resize(c * h * w);
  float* ptr = (data->im_data_).data();
  for (int i = 0; i < c; ++i) {
    cv::extractChannel(*im, cv::Mat(h, w, CV_32FC1, ptr + i * h * w), i);
  }
  return true;
}
}  // namespace PaddleX