detection.md 13.3 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
# 目标检测

## YOLOv3类

```python
paddlex.det.YOLOv3(num_classes=80, backbone='MobileNetV1', anchors=None, anchor_masks=None, ignore_threshold=0.7, nms_score_threshold=0.01, nms_topk=1000, nms_keep_topk=100, nms_iou_threshold=0.45, label_smooth=False, train_random_shapes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608])
```

> 构建YOLOv3检测器。**注意在YOLOv3,num_classes不需要包含背景类,如目标包括human、dog两种,则num_classes设为2即可,这里与FasterRCNN/MaskRCNN有差别**

> **参数**
> 
> > - **num_classes** (int): 类别数。默认为80。
> > - **backbone** (str): YOLOv3的backbone网络,取值范围为['DarkNet53', 'ResNet34', 'MobileNetV1', 'MobileNetV3_large']。默认为'MobileNetV1'。
> > - **anchors** (list|tuple): anchor框的宽度和高度,为None时表示使用默认值
> >                  [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
>                   [59, 119], [116, 90], [156, 198], [373, 326]]。
> > - **anchor_masks** (list|tuple): 在计算YOLOv3损失时,使用anchor的mask索引,为None时表示使用默认值
> >                    [[6, 7, 8], [3, 4, 5], [0, 1, 2]]。
> > - **ignore_threshold** (float): 在计算YOLOv3损失时,IoU大于`ignore_threshold`的预测框的置信度被忽略。默认为0.7。
> > - **nms_score_threshold** (float): 检测框的置信度得分阈值,置信度得分低于阈值的框应该被忽略。默认为0.01。
> > - **nms_topk** (int): 进行NMS时,根据置信度保留的最大检测框数。默认为1000。
> > - **nms_keep_topk** (int): 进行NMS后,每个图像要保留的总检测框数。默认为100。
> > - **nms_iou_threshold** (float): 进行NMS时,用于剔除检测框IOU的阈值。默认为0.45。
> > - **label_smooth** (bool): 是否使用label smooth。默认值为False。
> > - **train_random_shapes** (list|tuple): 训练时从列表中随机选择图像大小。默认值为[320, 352, 384, 416, 448, 480, 512, 544, 576, 608]。

### train 训练接口

```python
train(self, num_epochs, train_dataset, train_batch_size=8, eval_dataset=None, save_interval_epochs=20, log_interval_steps=2, save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=1.0/8000, warmup_steps=1000, warmup_start_lr=0.0, lr_decay_epochs=[213, 240], lr_decay_gamma=0.1, metric=None, use_vdl=False, sensitivities_file=None, eval_metric_loss=0.05, early_stop=False, early_stop_patience=5, resume_checkpoint=None)
```

> YOLOv3模型的训练接口,函数内置了`piecewise`学习率衰减策略和`momentum`优化器。

> **参数**
>
> > - **num_epochs** (int): 训练迭代轮数。
> > - **train_dataset** (paddlex.datasets): 训练数据读取器。
> > - **train_batch_size** (int): 训练数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与显卡数量之商为验证数据batch大小。默认值为8。
> > - **eval_dataset** (paddlex.datasets): 验证数据读取器。
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为20。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认值为'output'。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为None。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
> > - **learning_rate** (float): 默认优化器的学习率。默认为1.0/8000。
> > - **warmup_steps** (int):  默认优化器进行warmup过程的步数。默认为1000。
> > - **warmup_start_lr** (int): 默认优化器warmup的起始学习率。默认为0.0。
> > - **lr_decay_epochs** (list): 默认优化器的学习率衰减轮数。默认为[213, 240]。
> > - **lr_decay_gamma** (float): 默认优化器的学习率衰减率。默认为0.1。
> > - **metric** (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。
> > - **sensitivities_file** (str): 若指定为路径时,则加载路径下敏感度信息进行裁剪;若为字符串'DEFAULT',则自动下载在PascalVOC数据上获得的敏感度信息进行裁剪;若为None,则不进行裁剪。默认为None。
> > - **eval_metric_loss** (float): 可容忍的精度损失。默认为0.05。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。

### evaluate 评估接口

```python
evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_details=False)
```

> YOLOv3模型的评估接口,模型评估后会返回在验证集上的指标`box_map`(metric指定为'VOC'时)或`box_mmap`(metric指定为`COCO`时)。

> **参数**
>
> > - **eval_dataset** (paddlex.datasets): 验证数据读取器。
> > - **batch_size** (int): 验证数据批大小。默认为1。
> > - **epoch_id** (int): 当前评估模型所在的训练轮数。
> > - **metric** (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,根据用户传入的Dataset自动选择,如为VOCDetection,则`metric`为'VOC';如为COCODetection,则`metric`为'COCO'默认为None, 如为EasyData类型数据集,同时也会使用'VOC'。
> > - **return_details** (bool): 是否返回详细信息。默认值为False。
> >
>  **返回值**
>
> > - **tuple** (metrics, eval_details) | **dict** (metrics): 当`return_details`为True时,返回(metrics, eval_details),当`return_details`为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘,分别表示平均准确率平均值在各个阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。

### predict 预测接口

```python
predict(self, img_file, transforms=None)
```

> YOLOv3模型预测接口。需要注意的是,只有在训练过程中定义了eval_dataset,模型在保存时才会将预测时的图像处理流程保存在`YOLOv3.test_transforms`和`YOLOv3.eval_transforms`中。如未在训练时定义eval_dataset,那在调用预测`predict`接口时,用户需要再重新定义`test_transforms`传入给`predict`接口

> **参数**
>
> > - **img_file** (str): 预测图像路径。
> > - **transforms** (paddlex.det.transforms): 数据预处理操作。
>
> **返回值**
>
> > - **list**: 预测结果列表,列表中每个元素均为一个dict,key包括'bbox', 'category', 'category_id', 'score',分别表示每个预测目标的框坐标信息、类别、类别id、置信度,其中框坐标信息为[xmin, ymin, w, h],即左上角x, y坐标和框的宽和高。


## FasterRCNN类

```python
paddlex.det.FasterRCNN(num_classes=81, backbone='ResNet50', with_fpn=True, aspect_ratios=[0.5, 1.0, 2.0], anchor_sizes=[32, 64, 128, 256, 512])

```

> 构建FasterRCNN检测器。 **注意在FasterRCNN中,num_classes需要设置为类别数+背景类,如目标包括human、dog两种,则num_classes需设为3,多的一种为背景background类别**

> **参数**

> > - **num_classes** (int): 包含了背景类的类别数。默认为81。
> > - **backbone** (str): FasterRCNN的backbone网络,取值范围为['ResNet18', 'ResNet50', 'ResNet50_vd', 'ResNet101', 'ResNet101_vd']。默认为'ResNet50'。
> > - **with_fpn** (bool): 是否使用FPN结构。默认为True。
> > - **aspect_ratios** (list): 生成anchor高宽比的可选值。默认为[0.5, 1.0, 2.0]。
> > - **anchor_sizes** (list): 生成anchor大小的可选值。默认为[32, 64, 128, 256, 512]。

### train 训练接口

```python
train(self, num_epochs, train_dataset, train_batch_size=2, eval_dataset=None, save_interval_epochs=1, log_interval_steps=2,save_dir='output', pretrain_weights='IMAGENET', optimizer=None, learning_rate=0.0025, warmup_steps=500, warmup_start_lr=1.0/1200, lr_decay_epochs=[8, 11], lr_decay_gamma=0.1, metric=None, use_vdl=False, early_stop=False, early_stop_patience=5, resume_checkpoint=None)
```

> FasterRCNN模型的训练接口,函数内置了`piecewise`学习率衰减策略和`momentum`优化器。

> **参数**
>
> > - **num_epochs** (int): 训练迭代轮数。
> > - **train_dataset** (paddlex.datasets): 训练数据读取器。
> > - **train_batch_size** (int): 训练数据batch大小。目前检测仅支持单卡评估,训练数据batch大小与显卡数量之商为验证数据batch大小。默认为2。
> > - **eval_dataset** (paddlex.datasets): 验证数据读取器。
> > - **save_interval_epochs** (int): 模型保存间隔(单位:迭代轮数)。默认为1。
> > - **log_interval_steps** (int): 训练日志输出间隔(单位:迭代次数)。默认为2。
> > - **save_dir** (str): 模型保存路径。默认值为'output'。
> > - **pretrain_weights** (str): 若指定为路径时,则加载路径下预训练模型;若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;若为None,则不使用预训练模型。默认为None。
> > - **optimizer** (paddle.fluid.optimizer): 优化器。当该参数为None时,使用默认优化器:fluid.layers.piecewise_decay衰减策略,fluid.optimizer.Momentum优化方法。
> > - **learning_rate** (float): 默认优化器的初始学习率。默认为0.0025。
> > - **warmup_steps** (int):  默认优化器进行warmup过程的步数。默认为500。
> > - **warmup_start_lr** (int): 默认优化器warmup的起始学习率。默认为1.0/1200。
> > - **lr_decay_epochs** (list): 默认优化器的学习率衰减轮数。默认为[8, 11]。
> > - **lr_decay_gamma** (float): 默认优化器的学习率衰减率。默认为0.1。
> > - **metric** (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认值为None。
> > - **use_vdl** (bool): 是否使用VisualDL进行可视化。默认值为False。
> > - **early_stop** (float): 是否使用提前终止训练策略。默认值为False。
> > - **early_stop_patience** (int): 当使用提前终止训练策略时,如果验证集精度在`early_stop_patience`个epoch内连续下降或持平,则终止训练。默认值为5。
> > - **resume_checkpoint** (str): 恢复训练时指定上次训练保存的模型路径。若为None,则不会恢复训练。默认值为None。

### evaluate 接口

```python
evaluate(self, eval_dataset, batch_size=1, epoch_id=None, metric=None, return_details=False)
```

> FasterRCNN模型的评估接口,模型评估后会返回在验证集上的指标box_map(metric指定为’VOC’时)或box_mmap(metric指定为COCO时)。

> **参数**
>
> > - **eval_dataset** (paddlex.datasets): 验证数据读取器。
> > - **batch_size** (int): 验证数据批大小。默认为1。当前只支持设置为1。
> > - **epoch_id** (int): 当前评估模型所在的训练轮数。
> > - **metric** (bool): 训练过程中评估的方式,取值范围为['COCO', 'VOC']。默认为None,根据用户传入的Dataset自动选择,如为VOCDetection,则`metric`为'VOC'; 如为COCODetection,则`metric`为'COCO'。
> > - **return_details** (bool): 是否返回详细信息。默认值为False。
> >
> **返回值**
>
> > - **tuple** (metrics, eval_details) | **dict** (metrics): 当`return_details`为True时,返回(metrics, eval_details),当`return_details`为False时,返回metrics。metrics为dict,包含关键字:'bbox_mmap'或者’bbox_map‘,分别表示平均准确率平均值在各个IoU阈值下的结果取平均值的结果(mmAP)、平均准确率平均值(mAP)。eval_details为dict,包含关键字:'bbox',对应元素预测结果列表,每个预测结果由图像id、预测框类别id、预测框坐标、预测框得分;’gt‘:真实标注框相关信息。

### predict 预测接口

```python
predict(self, img_file, transforms=None)
```

> FasterRCNN模型预测接口。需要注意的是,只有在训练过程中定义了eval_dataset,模型在保存时才会将预测时的图像处理流程保存在`FasterRCNN.test_transforms`和`FasterRCNN.eval_transforms`中。如未在训练时定义eval_dataset,那在调用预测`predict`接口时,用户需要再重新定义test_transforms传入给`predict`接口。

> **参数**
>
> > - **img_file** (str): 预测图像路径。
> > - **transforms** (paddlex.det.transforms): 数据预处理操作。
>
> **返回值**
>
> > - **list**: 预测结果列表,列表中每个元素均为一个dict,key包括'bbox', 'category', 'category_id', 'score',分别表示每个预测目标的框坐标信息、类别、类别id、置信度,其中框坐标信息为[xmin, ymin, w, h],即左上角x, y坐标和框的宽和高。