Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSlim
提交
fdb09f05
P
PaddleSlim
项目概览
PaddlePaddle
/
PaddleSlim
大约 2 年 前同步成功
通知
51
Star
1434
Fork
344
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
16
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSlim
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
16
合并请求
16
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fdb09f05
编写于
12月 31, 2019
作者:
C
ceci3
提交者:
GitHub
12月 31, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update nas (#18)
上级
cbaac40d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
62 addition
and
21 deletion
+62
-21
paddleslim/common/sa_controller.py
paddleslim/common/sa_controller.py
+43
-17
paddleslim/nas/sa_nas.py
paddleslim/nas/sa_nas.py
+19
-4
未找到文件。
paddleslim/common/sa_controller.py
浏览文件 @
fdb09f05
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
"""The controller used to search hyperparameters or neural architecture"""
"""The controller used to search hyperparameters or neural architecture"""
import
os
import
os
import
sys
import
copy
import
copy
import
math
import
math
import
logging
import
logging
...
@@ -34,20 +35,21 @@ class SAController(EvolutionaryController):
...
@@ -34,20 +35,21 @@ class SAController(EvolutionaryController):
range_table
=
None
,
range_table
=
None
,
reduce_rate
=
0.85
,
reduce_rate
=
0.85
,
init_temperature
=
1024
,
init_temperature
=
1024
,
max_try_times
=
None
,
max_try_times
=
300
,
init_tokens
=
None
,
init_tokens
=
None
,
reward
=-
1
,
reward
=-
1
,
max_reward
=-
1
,
max_reward
=-
1
,
iters
=
0
,
iters
=
0
,
best_tokens
=
None
,
best_tokens
=
None
,
constrain_func
=
None
,
constrain_func
=
None
,
checkpoints
=
None
):
checkpoints
=
None
,
searched
=
None
):
"""Initialize.
"""Initialize.
Args:
Args:
range_table(list<int>): Range table.
range_table(list<int>): Range table.
reduce_rate(float): The decay rate of temperature.
reduce_rate(float): The decay rate of temperature.
init_temperature(float): Init temperature.
init_temperature(float): Init temperature.
max_try_times(int): max try times before get legal tokens.
max_try_times(int): max try times before get legal tokens.
Default: 300.
init_tokens(list<int>): The initial tokens. Default: None.
init_tokens(list<int>): The initial tokens. Default: None.
reward(float): The reward of current tokens. Default: -1.
reward(float): The reward of current tokens. Default: -1.
max_reward(float): The max reward in the search of sanas, in general, best tokens get max reward. Default: -1.
max_reward(float): The max reward in the search of sanas, in general, best tokens get max reward. Default: -1.
...
@@ -55,6 +57,7 @@ class SAController(EvolutionaryController):
...
@@ -55,6 +57,7 @@ class SAController(EvolutionaryController):
best_tokens(list<int>): The best tokens in the search of sanas, in general, best tokens get max reward. Default: None.
best_tokens(list<int>): The best tokens in the search of sanas, in general, best tokens get max reward. Default: None.
constrain_func(function): The callback function used to check whether the tokens meet constraint. None means there is no constraint. Default: None.
constrain_func(function): The callback function used to check whether the tokens meet constraint. None means there is no constraint. Default: None.
checkpoints(str): if checkpoint is None, donnot save checkpoints, else save scene to checkpoints file.
checkpoints(str): if checkpoint is None, donnot save checkpoints, else save scene to checkpoints file.
searched(dict<list, float>): remember tokens which are searched.
"""
"""
super
(
SAController
,
self
).
__init__
()
super
(
SAController
,
self
).
__init__
()
self
.
_range_table
=
range_table
self
.
_range_table
=
range_table
...
@@ -70,6 +73,7 @@ class SAController(EvolutionaryController):
...
@@ -70,6 +73,7 @@ class SAController(EvolutionaryController):
self
.
_best_tokens
=
best_tokens
self
.
_best_tokens
=
best_tokens
self
.
_iter
=
iters
self
.
_iter
=
iters
self
.
_checkpoints
=
checkpoints
self
.
_checkpoints
=
checkpoints
self
.
_searched
=
searched
if
searched
!=
None
else
dict
()
def
__getstate__
(
self
):
def
__getstate__
(
self
):
d
=
{}
d
=
{}
...
@@ -78,6 +82,18 @@ class SAController(EvolutionaryController):
...
@@ -78,6 +82,18 @@ class SAController(EvolutionaryController):
d
[
key
]
=
self
.
__dict__
[
key
]
d
[
key
]
=
self
.
__dict__
[
key
]
return
d
return
d
@
property
def
best_tokens
(
self
):
return
self
.
_best_tokens
@
property
def
max_reward
(
self
):
return
self
.
_max_reward
@
property
def
current_tokens
(
self
):
return
self
.
_tokens
def
update
(
self
,
tokens
,
reward
,
iter
):
def
update
(
self
,
tokens
,
reward
,
iter
):
"""
"""
Update the controller according to latest tokens and reward.
Update the controller according to latest tokens and reward.
...
@@ -88,6 +104,7 @@ class SAController(EvolutionaryController):
...
@@ -88,6 +104,7 @@ class SAController(EvolutionaryController):
iter
=
int
(
iter
)
iter
=
int
(
iter
)
if
iter
>
self
.
_iter
:
if
iter
>
self
.
_iter
:
self
.
_iter
=
iter
self
.
_iter
=
iter
self
.
_searched
[
str
(
tokens
)]
=
reward
temperature
=
self
.
_init_temperature
*
self
.
_reduce_rate
**
self
.
_iter
temperature
=
self
.
_init_temperature
*
self
.
_reduce_rate
**
self
.
_iter
if
(
reward
>
self
.
_reward
)
or
(
np
.
random
.
random
()
<=
math
.
exp
(
if
(
reward
>
self
.
_reward
)
or
(
np
.
random
.
random
()
<=
math
.
exp
(
(
reward
-
self
.
_reward
)
/
temperature
)):
(
reward
-
self
.
_reward
)
/
temperature
)):
...
@@ -112,22 +129,31 @@ class SAController(EvolutionaryController):
...
@@ -112,22 +129,31 @@ class SAController(EvolutionaryController):
tokens
=
control_token
[:]
tokens
=
control_token
[:]
else
:
else
:
tokens
=
self
.
_tokens
tokens
=
self
.
_tokens
new_tokens
=
tokens
[:]
for
it
in
range
(
self
.
_max_try_times
):
index
=
int
(
len
(
self
.
_range_table
[
0
])
*
np
.
random
.
random
())
new_tokens
=
tokens
[:]
new_tokens
[
index
]
=
np
.
random
.
randint
(
self
.
_range_table
[
0
][
index
],
index
=
int
(
len
(
self
.
_range_table
[
0
])
*
np
.
random
.
random
())
self
.
_range_table
[
1
][
index
])
new_tokens
[
index
]
=
np
.
random
.
randint
(
self
.
_range_table
[
0
][
index
],
_logger
.
debug
(
"change index[{}] from {} to {}"
.
format
(
index
,
tokens
[
self
.
_range_table
[
1
][
index
])
index
],
new_tokens
[
index
]))
_logger
.
debug
(
"change index[{}] from {} to {}"
.
format
(
if
self
.
_constrain_func
is
None
or
self
.
_max_try_times
is
None
:
index
,
tokens
[
index
],
new_tokens
[
index
]))
return
new_tokens
for
_
in
range
(
self
.
_max_try_times
):
if
self
.
_searched
.
has_key
(
str
(
new_tokens
)):
if
not
self
.
_constrain_func
(
new_tokens
):
_logger
.
debug
(
'get next tokens including searched tokens: {}'
.
index
=
int
(
len
(
self
.
_range_table
[
0
])
*
np
.
random
.
random
())
format
(
new_tokens
))
new_tokens
=
tokens
[:]
continue
new_tokens
[
index
]
=
np
.
random
.
randint
(
self
.
_range_table
[
0
][
index
],
self
.
_range_table
[
1
][
index
])
else
:
else
:
self
.
_searched
[
str
(
new_tokens
)]
=
-
1
break
break
if
it
==
self
.
_max_try_times
-
1
:
_logger
.
info
(
"cannot get a effective search space which is not searched in max try times!!!"
)
sys
.
exit
()
if
self
.
_constrain_func
is
None
or
self
.
_max_try_times
is
None
:
return
new_tokens
return
new_tokens
return
new_tokens
def
_save_checkpoint
(
self
,
output_dir
):
def
_save_checkpoint
(
self
,
output_dir
):
...
...
paddleslim/nas/sa_nas.py
浏览文件 @
fdb09f05
...
@@ -93,29 +93,32 @@ class SANAS(object):
...
@@ -93,29 +93,32 @@ class SANAS(object):
premax_reward
=
scene
[
'_max_reward'
]
premax_reward
=
scene
[
'_max_reward'
]
prebest_tokens
=
scene
[
'_best_tokens'
]
prebest_tokens
=
scene
[
'_best_tokens'
]
preiter
=
scene
[
'_iter'
]
preiter
=
scene
[
'_iter'
]
psearched
=
screen
[
'_searched'
]
else
:
else
:
preinit_tokens
=
init_tokens
preinit_tokens
=
init_tokens
prereward
=
-
1
prereward
=
-
1
premax_reward
=
-
1
premax_reward
=
-
1
prebest_tokens
=
None
prebest_tokens
=
None
preiter
=
0
preiter
=
0
psearched
=
None
controller
=
SAController
(
self
.
_
controller
=
SAController
(
range_table
,
range_table
,
self
.
_reduce_rate
,
self
.
_reduce_rate
,
self
.
_init_temperature
,
self
.
_init_temperature
,
max_try_times
=
None
,
max_try_times
=
500
,
init_tokens
=
preinit_tokens
,
init_tokens
=
preinit_tokens
,
reward
=
prereward
,
reward
=
prereward
,
max_reward
=
premax_reward
,
max_reward
=
premax_reward
,
iters
=
preiter
,
iters
=
preiter
,
best_tokens
=
prebest_tokens
,
best_tokens
=
prebest_tokens
,
constrain_func
=
None
,
constrain_func
=
None
,
checkpoints
=
save_checkpoint
)
checkpoints
=
save_checkpoint
,
searched
=
psearched
)
max_client_num
=
100
max_client_num
=
100
self
.
_controller_server
=
ControllerServer
(
self
.
_controller_server
=
ControllerServer
(
controller
=
controller
,
controller
=
self
.
_
controller
,
address
=
(
server_ip
,
server_port
),
address
=
(
server_ip
,
server_port
),
max_client_num
=
max_client_num
,
max_client_num
=
max_client_num
,
search_steps
=
search_steps
,
search_steps
=
search_steps
,
...
@@ -137,6 +140,18 @@ class SANAS(object):
...
@@ -137,6 +140,18 @@ class SANAS(object):
def
tokens2arch
(
self
,
tokens
):
def
tokens2arch
(
self
,
tokens
):
return
self
.
_search_space
.
token2arch
(
tokens
)
return
self
.
_search_space
.
token2arch
(
tokens
)
def
current_info
(
self
):
"""
Get current information, including best tokens, best reward in all the search, and current token.
Returns:
dict<name, value>: a dictionary include best tokens, best reward and current reward.
"""
current_dict
=
dict
()
current_dict
[
'best_tokens'
]
=
self
.
_controller
.
best_tokens
current_dict
[
'best_reward'
]
=
self
.
_controller
.
max_reward
current_dict
[
'current_tokens'
]
=
self
.
_controller
.
current_tokens
return
current_dict
def
next_archs
(
self
):
def
next_archs
(
self
):
"""
"""
Get next network architectures.
Get next network architectures.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录