未验证 提交 fdb09f05 编写于 作者: C ceci3 提交者: GitHub

update nas (#18)

上级 cbaac40d
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
"""The controller used to search hyperparameters or neural architecture""" """The controller used to search hyperparameters or neural architecture"""
import os import os
import sys
import copy import copy
import math import math
import logging import logging
...@@ -34,20 +35,21 @@ class SAController(EvolutionaryController): ...@@ -34,20 +35,21 @@ class SAController(EvolutionaryController):
range_table=None, range_table=None,
reduce_rate=0.85, reduce_rate=0.85,
init_temperature=1024, init_temperature=1024,
max_try_times=None, max_try_times=300,
init_tokens=None, init_tokens=None,
reward=-1, reward=-1,
max_reward=-1, max_reward=-1,
iters=0, iters=0,
best_tokens=None, best_tokens=None,
constrain_func=None, constrain_func=None,
checkpoints=None): checkpoints=None,
searched=None):
"""Initialize. """Initialize.
Args: Args:
range_table(list<int>): Range table. range_table(list<int>): Range table.
reduce_rate(float): The decay rate of temperature. reduce_rate(float): The decay rate of temperature.
init_temperature(float): Init temperature. init_temperature(float): Init temperature.
max_try_times(int): max try times before get legal tokens. max_try_times(int): max try times before get legal tokens. Default: 300.
init_tokens(list<int>): The initial tokens. Default: None. init_tokens(list<int>): The initial tokens. Default: None.
reward(float): The reward of current tokens. Default: -1. reward(float): The reward of current tokens. Default: -1.
max_reward(float): The max reward in the search of sanas, in general, best tokens get max reward. Default: -1. max_reward(float): The max reward in the search of sanas, in general, best tokens get max reward. Default: -1.
...@@ -55,6 +57,7 @@ class SAController(EvolutionaryController): ...@@ -55,6 +57,7 @@ class SAController(EvolutionaryController):
best_tokens(list<int>): The best tokens in the search of sanas, in general, best tokens get max reward. Default: None. best_tokens(list<int>): The best tokens in the search of sanas, in general, best tokens get max reward. Default: None.
constrain_func(function): The callback function used to check whether the tokens meet constraint. None means there is no constraint. Default: None. constrain_func(function): The callback function used to check whether the tokens meet constraint. None means there is no constraint. Default: None.
checkpoints(str): if checkpoint is None, donnot save checkpoints, else save scene to checkpoints file. checkpoints(str): if checkpoint is None, donnot save checkpoints, else save scene to checkpoints file.
searched(dict<list, float>): remember tokens which are searched.
""" """
super(SAController, self).__init__() super(SAController, self).__init__()
self._range_table = range_table self._range_table = range_table
...@@ -70,6 +73,7 @@ class SAController(EvolutionaryController): ...@@ -70,6 +73,7 @@ class SAController(EvolutionaryController):
self._best_tokens = best_tokens self._best_tokens = best_tokens
self._iter = iters self._iter = iters
self._checkpoints = checkpoints self._checkpoints = checkpoints
self._searched = searched if searched != None else dict()
def __getstate__(self): def __getstate__(self):
d = {} d = {}
...@@ -78,6 +82,18 @@ class SAController(EvolutionaryController): ...@@ -78,6 +82,18 @@ class SAController(EvolutionaryController):
d[key] = self.__dict__[key] d[key] = self.__dict__[key]
return d return d
@property
def best_tokens(self):
return self._best_tokens
@property
def max_reward(self):
return self._max_reward
@property
def current_tokens(self):
return self._tokens
def update(self, tokens, reward, iter): def update(self, tokens, reward, iter):
""" """
Update the controller according to latest tokens and reward. Update the controller according to latest tokens and reward.
...@@ -88,6 +104,7 @@ class SAController(EvolutionaryController): ...@@ -88,6 +104,7 @@ class SAController(EvolutionaryController):
iter = int(iter) iter = int(iter)
if iter > self._iter: if iter > self._iter:
self._iter = iter self._iter = iter
self._searched[str(tokens)] = reward
temperature = self._init_temperature * self._reduce_rate**self._iter temperature = self._init_temperature * self._reduce_rate**self._iter
if (reward > self._reward) or (np.random.random() <= math.exp( if (reward > self._reward) or (np.random.random() <= math.exp(
(reward - self._reward) / temperature)): (reward - self._reward) / temperature)):
...@@ -112,22 +129,31 @@ class SAController(EvolutionaryController): ...@@ -112,22 +129,31 @@ class SAController(EvolutionaryController):
tokens = control_token[:] tokens = control_token[:]
else: else:
tokens = self._tokens tokens = self._tokens
new_tokens = tokens[:] for it in range(self._max_try_times):
index = int(len(self._range_table[0]) * np.random.random()) new_tokens = tokens[:]
new_tokens[index] = np.random.randint(self._range_table[0][index], index = int(len(self._range_table[0]) * np.random.random())
self._range_table[1][index]) new_tokens[index] = np.random.randint(self._range_table[0][index],
_logger.debug("change index[{}] from {} to {}".format(index, tokens[ self._range_table[1][index])
index], new_tokens[index])) _logger.debug("change index[{}] from {} to {}".format(
if self._constrain_func is None or self._max_try_times is None: index, tokens[index], new_tokens[index]))
return new_tokens
for _ in range(self._max_try_times): if self._searched.has_key(str(new_tokens)):
if not self._constrain_func(new_tokens): _logger.debug('get next tokens including searched tokens: {}'.
index = int(len(self._range_table[0]) * np.random.random()) format(new_tokens))
new_tokens = tokens[:] continue
new_tokens[index] = np.random.randint(
self._range_table[0][index], self._range_table[1][index])
else: else:
self._searched[str(new_tokens)] = -1
break break
if it == self._max_try_times - 1:
_logger.info(
"cannot get a effective search space which is not searched in max try times!!!"
)
sys.exit()
if self._constrain_func is None or self._max_try_times is None:
return new_tokens
return new_tokens return new_tokens
def _save_checkpoint(self, output_dir): def _save_checkpoint(self, output_dir):
......
...@@ -93,29 +93,32 @@ class SANAS(object): ...@@ -93,29 +93,32 @@ class SANAS(object):
premax_reward = scene['_max_reward'] premax_reward = scene['_max_reward']
prebest_tokens = scene['_best_tokens'] prebest_tokens = scene['_best_tokens']
preiter = scene['_iter'] preiter = scene['_iter']
psearched = screen['_searched']
else: else:
preinit_tokens = init_tokens preinit_tokens = init_tokens
prereward = -1 prereward = -1
premax_reward = -1 premax_reward = -1
prebest_tokens = None prebest_tokens = None
preiter = 0 preiter = 0
psearched = None
controller = SAController( self._controller = SAController(
range_table, range_table,
self._reduce_rate, self._reduce_rate,
self._init_temperature, self._init_temperature,
max_try_times=None, max_try_times=500,
init_tokens=preinit_tokens, init_tokens=preinit_tokens,
reward=prereward, reward=prereward,
max_reward=premax_reward, max_reward=premax_reward,
iters=preiter, iters=preiter,
best_tokens=prebest_tokens, best_tokens=prebest_tokens,
constrain_func=None, constrain_func=None,
checkpoints=save_checkpoint) checkpoints=save_checkpoint,
searched = psearched)
max_client_num = 100 max_client_num = 100
self._controller_server = ControllerServer( self._controller_server = ControllerServer(
controller=controller, controller=self._controller,
address=(server_ip, server_port), address=(server_ip, server_port),
max_client_num=max_client_num, max_client_num=max_client_num,
search_steps=search_steps, search_steps=search_steps,
...@@ -137,6 +140,18 @@ class SANAS(object): ...@@ -137,6 +140,18 @@ class SANAS(object):
def tokens2arch(self, tokens): def tokens2arch(self, tokens):
return self._search_space.token2arch(tokens) return self._search_space.token2arch(tokens)
def current_info(self):
"""
Get current information, including best tokens, best reward in all the search, and current token.
Returns:
dict<name, value>: a dictionary include best tokens, best reward and current reward.
"""
current_dict = dict()
current_dict['best_tokens'] = self._controller.best_tokens
current_dict['best_reward'] = self._controller.max_reward
current_dict['current_tokens'] = self._controller.current_tokens
return current_dict
def next_archs(self): def next_archs(self):
""" """
Get next network architectures. Get next network architectures.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册